next up previous contents index

1.2.4 Changes of the conserved quantities

Without source terms the only change between time \bgroup\color{DEFcolor}$t_1$\egroup and \bgroup\color{DEFcolor}$t_0$\egroup to the amount of a conserved variable inside a volume \bgroup\color{DEFcolor}$V$\egroup comes from the flux through its surface \bgroup\color{DEFcolor}$\partial V$\egroup.

Integrating Eqs. (8) to (10) over that surface and time thus gives

\begin{displaymath}
\int_{V} \rho \left( \ensuremath{\mathchoice{\mbox{\boldmat...
... n$}}
{\mbox{\boldmath$\scriptscriptstyle n$}}}} \; d\!A   dt
\end{displaymath} (11)
\begin{displaymath}
\int_{V} \rho\ensuremath{\mathchoice{\mbox{\boldmath$\displ...
... n$}}
{\mbox{\boldmath$\scriptscriptstyle n$}}}} \; d\!A   dt
\end{displaymath} (12)
\begin{displaymath}
\int_{V} \rho e_{\rm ik}\left( \ensuremath{\mathchoice{\mbo...
... n$}}
{\mbox{\boldmath$\scriptscriptstyle n$}}}} \; d\!A   dt
\end{displaymath} (13)
The unity tensor \bgroup\color{DEFcolor}$\bar{\bar{\ensuremath{\mathsf{I}}}}$\egroup has been squeezed in,
\begin{displaymath}
P\hat{\ensuremath{\mathchoice{\mbox{\boldmath$\displaystyle...
...yle n$}}
{\mbox{\boldmath$\scriptscriptstyle n$}}}} \enspace .
\end{displaymath} (14)