next up previous contents index

1.2.6 Euler equations: from integral to differential form I

To transform the mass transport equation into differential form the first line of Eq. (15) is divided by \bgroup\color{DEFcolor}$\left( t_1 - t_0 \right)$\egroup,

\begin{displaymath}
\int_{V} \frac{ \rho \left( \ensuremath{\mathchoice{\mbox{\...
...math$\scriptscriptstyle n$}}}} \; d\!A   dt
=
0
\enspace .
\end{displaymath} (16)
Taking the limes \bgroup\color{DEFcolor}$t_1 \rightarrow t_0$\egroup and assuming that the derivative \bgroup\color{DEFcolor}$ \frac{\partial \rho}{\partial t} $\egroup exists for all \bgroup\color{DEFcolor}$\ensuremath{\mathchoice{\mbox{\boldmath$\displaystyle x$...
...ox{\boldmath$\scriptstyle x$}}
{\mbox{\boldmath$\scriptscriptstyle x$}}}$\egroup we get
\begin{displaymath}
\int_{V} \frac{\partial \rho}{\partial t}
  dV
+
\oint...
...{\boldmath$\scriptscriptstyle n$}}}} \; d\!A
=
0
\enspace .
\end{displaymath} (17)
Now, the Gauß theorem is applied (assuming that the divergence \bgroup\color{DEFcolor}$\ensuremath{\mathchoice{\mbox{\boldmath$\nabla$}}
{\mbox...
...ox{\boldmath$\scriptstyle v$}}
{\mbox{\boldmath$\scriptscriptstyle v$}}}$\egroup does exist) to transform the surface integral into a volume integral. We get
\begin{displaymath}
\int_{V} \frac{\partial \rho}{\partial t}
  dV
+
\int_...
...ox{\boldmath$\scriptscriptstyle v$}}}
  dV
=
0
\enspace .
\end{displaymath} (18)