next up previous contents index

1.4.3 Stationary case: results

The quasi-stationary combination of of Eq. (23) and Eq. (28) gives:

Mass transport: mass loss or infall (and, in fact, horizontal laminar flow)

\begin{displaymath}
\langle \rho v_{z} \left( z \right) \rangle = \mathrm{const}
\end{displaymath} (33)
\begin{displaymath}
\langle \rho v_{x} \left( z \right) \rangle = \mathrm{const...
...
\langle \rho v_{y} \left( z \right) \rangle = \mathrm{const}
\end{displaymath} (34)
Vertical momentum: turbulent, gas, radiation pressure + gravity \bgroup\color{DEFcolor}$\rightarrow$\egroup pressure stratification
\begin{displaymath}
\frac{\partial }{\partial z} \left( \langle \rho v_{z}v_{z}...
...{\mathrm{rad},z} \rangle
\right)
=
- \langle \rho \rangle g
\end{displaymath} (35)
Energy flux: convective and radiative energy transport \bgroup\color{DEFcolor}$\rightarrow$\egroup temperature stratification
\begin{displaymath}
\langle \left[ \rho e_{\rm ikg}+ P \right] v_{z} \rangle +
\langle F_{\mathrm{rad},z} \rangle
=
\mathrm{const}
=
F_{*}
\end{displaymath} (36)