next up previous contents index

1.5.1 1D Euler equations in conservation form

The Euler equations (2) restricted to one spatial dimension,

\begin{displaymath}
{ \renewedcommand{arraystretch}{1.2}
\frac{\partial }{\part...
...!
\begin{array}{c}
0 \\
0 \\
0
\end{array} \! \right)
}
\end{displaymath} (40)
have the form (conservation form)
\begin{displaymath}
\frac{\partial }{\partial t} \ensuremath{\mathchoice{\mbox{...
...th$\scriptstyle 0$}}
{\mbox{\boldmath$\scriptscriptstyle 0$}}}
\end{displaymath} (41)
for the quantity vector \bgroup\color{DEFcolor}$\ensuremath{\mathchoice{\mbox{\boldmath$\displaystyle q$...
...ox{\boldmath$\scriptstyle q$}}
{\mbox{\boldmath$\scriptscriptstyle q$}}}$\egroup with flux vector \bgroup\color{DEFcolor}$\ensuremath{\mathchoice{\mbox{\boldmath$\displaystyle F$...
...ox{\boldmath$\scriptstyle F$}}
{\mbox{\boldmath$\scriptscriptstyle F$}}}$\egroup,
\begin{displaymath}
{ \renewedcommand{arraystretch}{1.2}
\ensuremath{\mathchoic...
...+ \! P \right] \; v_{} \!\!
\end{array} \right)
\enspace .
}
\end{displaymath} (42)