next up previous contents index

1.5.3 Hyperbolic system

A linear system (43) of PDEs is called hyperbolic if \bgroup\color{DEFcolor}$\bar{\bar{\ensuremath{\mathsf{A}}}}$\egroup is diagonalizable, i.e., there exists a matrix \bgroup\color{DEFcolor}$\bar{\bar{\ensuremath{\mathsf{Q}}}}$\egroup with

\begin{displaymath}
\bar{\bar{\ensuremath{\mathsf{\Lambda}}}} = \bar{\bar{\ensu...
...{\ensuremath{\mathsf{A}}}} \bar{\bar{\ensuremath{\mathsf{Q}}}}
\end{displaymath} (46)
and \bgroup\color{DEFcolor}$\bar{\bar{\ensuremath{\mathsf{\Lambda}}}}$\egroup is in diagonal form (with real numbers on the diagonal: the eigenvalues of \bgroup\color{DEFcolor}$\bar{\bar{\ensuremath{\mathsf{A}}}}$\egroup).

With the definition

\begin{displaymath}
\ensuremath{\mathchoice{\mbox{\boldmath$\displaystyle q$}}
...
...h$\scriptstyle q$}}
{\mbox{\boldmath$\scriptscriptstyle q$}}}
\end{displaymath} (47)
Eq. (43) gets the characteristic form
\begin{displaymath}
\;\;\!\! \frac{\partial }{\partial t} \ensuremath{\mathchoi...
...yle 0$}}
{\mbox{\boldmath$\scriptscriptstyle 0$}}}
\enspace .
\end{displaymath} (48)
This is now a set of independent equations, each of the simple form
\begin{displaymath}
\;\;\!\! \frac{\partial }{\partial t} q'_i + \lambda_i \; \frac{\partial }{\partial x} q'_i = 0
\enspace .
\end{displaymath} (49)
A quasi-linear system with \bgroup\color{DEFcolor}$\bar{\bar{\ensuremath{\mathsf{A}}}} \left( \ensuremath{\...
...scriptstyle q$}}
{\mbox{\boldmath$\scriptscriptstyle q$}}}, x, t \right)$\egroup can be hyperbolic at point \bgroup\color{DEFcolor}$\left( \ensuremath{\mathchoice{\mbox{\boldmath$\displays...
...scriptstyle q$}}
{\mbox{\boldmath$\scriptscriptstyle q$}}}, x, t \right)$\egroup.