next up previous contents index

2.2.1 Simple ODE: discretization

The simple ordinary differential equation (ODE)

\begin{displaymath}
\frac{\mathrm{d} y}{\mathrm{d} t} = - a   y
\end{displaymath} (71)
with initial value
\begin{displaymath}
y \left( t_0 \right) = y_0
\end{displaymath} (72)
is of first order and linear with constant coefficient \bgroup\color{DEFcolor}$a$\egroup. It has the obvious solution
\begin{displaymath}
y \left( t \right) = y_0   \mathrm{e}^{- a \left( t - t_0 \right)}
\enspace .
\end{displaymath} (73)
For discrete time-steps
\begin{displaymath}
t^{n} = \Delta t  n + t_0
\end{displaymath} (74)
the straight-forward replacement \bgroup\color{DEFcolor}$\mathrm{d} t \rightarrow \Delta t$\egroup gives the most simple discretization (explicit Euler scheme: approximation of \bgroup\color{DEFcolor}$y$\egroup by a piecewise linear curve)
\begin{displaymath}
y^{n+1} = y^{n} - a   y^{n}   \Delta t
\enspace .
\end{displaymath} (75)