next up previous contents index

2.5.4 Modified equation for the FTFS scheme II

To replace \bgroup\color{DEFcolor}$ \frac{\partial^2 \rho}{{\partial t}^2} $\egroup in the modified equation (123) we write

$\displaystyle \frac{\partial^2 \rho}{{\partial t}^2} \Delta t+ v_{}   \frac{\partial^2 \rho}{{\partial x}^2} \Delta x$ $\textstyle =$ $\displaystyle \frac{\partial }{\partial t} \left( - v_{}   \frac{\partial \rho...
...l^2 \rho}{{\partial x}^2} \Delta x
+
O \! \left( \Delta t^2, \Delta x^2 \right)$ (124)
  $\textstyle =$ $\displaystyle - v_{}   \frac{\partial }{\partial x} \left( \frac{\partial \rho...
...l^2 \rho}{{\partial x}^2} \Delta x
+
O \! \left( \Delta t^2, \Delta x^2 \right)$ (125)
  $\textstyle =$ $\displaystyle v_{}^2 \frac{\partial^2 \rho}{{\partial x}^2} \Delta t
+
v_{}   ...
...l^2 \rho}{{\partial x}^2} \Delta x
+
O \! \left( \Delta t^2, \Delta x^2 \right)$ (126)
  $\textstyle =$ $\displaystyle v_{} \Delta x
\left( \frac{v_{} \Delta t}{\Delta x} + 1 \right)
\frac{\partial^2 \rho}{{\partial x}^2}
+
O \! \left( \Delta t^2, \Delta x^2 \right)$ (127)
and get for the modified equation for the FTFS scheme
\begin{displaymath}
\frac{\partial \rho}{\partial t} + v_{}   \frac{\partial \...
...ht)
\frac{\partial^2 \rho}{{\partial x}^2}
=
0
\enspace .
\end{displaymath} (128)
The coefficient of the additional diffusion term is positive: it describes anti-diffusion.