next up previous contents index

3.2.2 Flux-splitting

Both signs of the velocity are now possible.

Flux-splitting allows the use of schemes written for one sign of the velocity, still guaranteeing proper upwinding,

\begin{displaymath}
f \! \left( q \right) = f^{+} \! \left( q \right) + f^{-} \! \left( q \right)
\end{displaymath} (182)
with
\begin{displaymath}
\frac{\mathrm{d} f^{+}\!}{\mathrm{d} q} \ge 0
\enspace , \...
...ace
\frac{\mathrm{d} f^{-}\!}{\mathrm{d} q} \le 0
\enspace .
\end{displaymath} (183)
E.g.: extension of FTBS scheme to Courant-Isaacson-Rees scheme (CIR, now stable for both signs of \bgroup\color{DEFcolor}$v_{}$\egroup):
\begin{displaymath}
f_{i+\frac{1}{2}}^n
= \left\{
\begin{array}{ll}
f \! \le...
...mbox{if} \enspace v_{i+\frac{1}{2}} \le 0
\end{array} \right.
\end{displaymath} (184)
CIR for Burgers' equation:
\begin{displaymath}
f_{i+\frac{1}{2}}^n
= \left\{
\begin{array}{ll}
\frac{1}...
...mbox{if} \enspace v_{i+\frac{1}{2}} \le 0
\end{array} \right.
\end{displaymath} (185)