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1 Introduction of the equations of fluid dynamics

1.1 Presentation of the Euler equations
1.1.1 The Euler equations in differential form (vectors)

The Euler equations in differential conservation form in vector notation are

dp

a + V'(,O’U) =0
opv =

Ope;

gik + V- (lpex+Plv) = 0

They describe the inviscid flow of density p, momentum pv, and total energy pej., with

velocity vector
eix  total (internal + kinetic) energy per mass unit
P pressure
] unity tensor

1.1.2 The Euler equations in differential form (components)

The Euler equations in differential conservation form, split into components, are

> 2 (o) b2 o) v (pwe) -
at ¥ ar PUr gy P 9, Uz -
o PUx P Pz Vg + P o PUz Vy P PUz Uz

_ — . —_ P I . _
o | Pl + oz | Pl + y PUy Uy + + a2 | P

pPUz POz Uy PUz Uy pPUz Uz + P

0 0 0

Gee + g (peackPlon + o (peactPlv) + 5 (et Pl vs) =

It is a system of first-order partial differential equations (PDEs).

1.1.3 The solution of the Euler equations

The task is now: Find a solution for Eq. ([2]) for given initial conditions

(p7 pv, Peik) (-’L', t()) )
boundary conditions
(107 pPv, peik) (mboundarie& t) )

and material function (equation of state)
P =P(p,e)
with
6 = ek — %v-v .
1.1.4 The prototype numerical solution of the Euler equations

The hydrodynamics equations () or (2) can be put into the form

0

¢ (P Ys pei) = flp, pv, pei)

where the function f contains the terms with the spatial derivatives.
Idea:

o oo o ©
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. take initial state (p, pv, peix) (x,ty) given on a grid
. compute v, e;, and P
. compute the spatial derivatives to get the right-hand side of Eq. ()

. get a small change of (p, pv, pej) in time

update (P, pY, peik)

restart at 2

There 1000 ways how this can go wrong. ..

1.2

Derivation of the Euler equations

1.2.1 Possible basic quantities

What do we need to describe a — simple — fluid locally?

e Macroscopic bulk velocity v (or momentum pv)

e Two thermodynamic quantities, e.g.

o temperature 1" and pressure P

o or mass density p and internal energy e;

All quantities depend on space  and time t. We assume

e LTE: two thermodynamic quantities are sufficient to describe the local microscopic state of

the fluid completely:

element composition, ionization, occupation numbers, microscopic velocity distribution,

e we do not need to look at the atomic level: we have a continuous fluid.

1.2.2 Choice of basic quantities

We choose the conserved variables

e density p,

e momentum pv,

e total energy eji

as basic quantities, because they have

e no source terms (we ignore gravity here),

e simpler transport properties

rather than e.g. the primitive variables

e density p,

e velocity v,

e pressure P.
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1.2.3 Fluxes through surface

Fluxes through surface element dA with normal vector n:
Mass transport — change of mass per time:

pv-n dA (8)

Momentum transport and acceleration by pressure force along surface normal — change of mo-
mentum per time
[pv:vn+ Pn] dA 9)

Energy transport and work done by pressure — change of total energy per time
[peik + Plv-n dA (10)

Shear forces (friction) are ignored.
There are no torsional forces (only relevant in solids).

1.2.4 Changes of the conserved quantities

Without source terms the only change between time ¢; and tg to the amount of a conserved
variable inside a volume V' comes from the flux through its surface V.
Integrating Eqgs. ([8) to (I0) over that surface and time thus gives

t1
/p(m,tl)dV—/p(w,tg)dV:—/ }1{ pv-n dAdt (11)
Vv Vv to ov

t1 _
/pv(w,tl)dV—/pv(az,to)dV——/ j(I{ [pv:v—i—Pl}ﬁdAdt (12)
v v to Jov

t1
/ peix (x,t1)dV — / peix (x,tg) dV = / % [peik + Plv-n dAdt (13)
\%4 \%4 to JOV
The unity tensor I has been squeezed in,

Pa=Plna . (14)

1.2.5 Euler equations in integral form

After a slight rearrangement we get the Euler equations in integral form:

t1
[bem-peuiav  + [T ponad — 0
Vv to ov

t1 _
/[pv(ac,tl)—pv(a:,tg)]dv + / 7{ [pv:v—I—Pl}ﬁdAdt =0 (15)
v to Jov

t1
/ [peik (x,t1) — peix (x,t0)] AV + / j{ [peik + Plv-ndAdt = 0
1% to ov

There is a close correspondence to the Euler equations in differential form (). Note however,
that in the integral form there are no derivatives.

1.2.6 Euler equations: from integral to differential form I

To transform the mass transport equation into differential form the first line of Eq. ([I3) is divided

by (tl _t0)7
_ 1 t1
1% t1—to i —to Jy, Jov
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Taking the limes ¢ — tp and assuming that the derivative % exists for all x we get

6pdv+7{ pv-dd=0 . (17)
v ot oV

Now, the Gaufl theorem is applied (assuming that the divergence V-pv does exist) to transform
the surface integral into a volume integral. We get

/apdV—i—/V-pvdV—O. (18)
v ot 1%

1.2.7 Euler equations: from integral to differential form II

Merging the two integrals gives

/V<Z’Z+V-pv> AV =0 . (19)

Because this is true for all (even small) volumes we conclude that the integrand has to be zero
and get the differential form of the mass transport equation,

dp

ot

This works the same for the energy equation and requires only a generalization of the Gaufl
theorem to be applicable to the momentum equation.

+Vopv=0. (20)

1.3 Extensions of the Euler equations
1.3.1 Hydrodynamics equations including viscosity

The viscous hydrodynamics equations are

dp

n + V-(pv) = 0
(i)éiv + V-(pv:v—?) =0 (21)
e (e t]e) <

with the stress tensor T (including a term for the gas pressure)
- - 9 -
T:—PH—M{[V:v—i—(V:v)T}—3V-v|} (22)

depending on the dynamic viscosity p.
Note: via T Eq. (2I)) contains second derivatives.
1.3.2 Hydrodynamics equations including gravity

The Euler equations with gravity are

ap

9t + V-(pv) = 0

Opv ) N 23
T + V-(pv.v—i—PI) = —pVo (23)
dpei

p(;tkg + Velpeug+Plv) = 0

with the gravitational potential ®. The total energy ej, now contains a contribution due to the
potential,
eikg:ei—k%v-v—ﬂb . (24)

Note: the momentum equation now contains a true source term.
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1.3.3 Hydrodynamics equations including magnetic fields

The equations of ideal magneto-hydrodynamics (MHD) are

dp
- \ £ = 0
5+ V(o)
0 -
L+ Ve(pvw s PT-Toy) = 0
6317; (25)
E + V. (’U B—-B: ’U) =0
0 el =
p K + V. (|:p eikb + P — Tmag} U) = 0
with the magnetic field B (with V-B = 0) and the Maxwell stress tensor 'T'mag
-T_mag:—%B'BT+BZB . (26)
The total energy e, now contains a contribution from the magnetic field,
eikb:eﬁ—%v-v—i—%B-B/p : (27)
1.3.4 Hydrodynamics equations including radiation
The hydrodynamics equations including radiative terms are
dp
“F \v@ - 0
5 T V(o)
0 - =
% + V-(pv:v+PI+Prad> =0 (28)
ope;
gtlk + Ve(lpeix+ Plv+ Fraa) = 0

where the radiative energy flux F',,q and the radiation pressure P,,q are computed from the
intensity I, (x,n,v) as (c: speed of light, v: frequency)

Frq( / ]{nI x,n,v)dwdv (29)

Prad ( ; / %n nl, (x,n,v)dwdy . (30)
]

1.4 Radiation hydrodynamics of stellar atmospheres
1.4.1 Conditions in stellar atmospheres

Flows in stellar atmospheres can be characterized by

7

e outer “boundary” of star: energy from the interior is radiated into space

dominant stratification: “essentially 1D”

e transition region between optically thick and thin regime

e low viscosity (large Reynolds numbers)

e flow speeds typically near sonic (Mach numbers not far below 1)
e magnetic fields can play a role — in some cases

Ignore magnetic fields in Eq. (25]) and viscous effects from Eq. (ZI]).
Keep terms due to gravity as in Eq. (23]) and the influence of radiation as in Eq. (28).
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1.4.2 Stationary case: assumptions
Assumption: gravity in z direction (downward):
b =gz . (31)

Assumption: quasi-stationarity (no trends, fluctuations allowed)
Averaging over t, x, and y gives

220, = =0, —=0. (32)

1.4.3 Stationary case: results

The quasi-stationary combination of of Eq. (23] and Eq. (28)) gives:
Mass transport: mass loss or infall (and, in fact, horizontal laminar flow)

(pv; (z)) = const (33)

(pvz (2)) = const, (pv, (2)) = const (34)

Vertical momentum: turbulent, gas, radiation pressure + gravity — pressure stratification

O (a0 4 (P) + (Puaa) = (o) (35)

Energy flux: convective and radiative energy transport — temperature stratification

([peikg + Plvz) + (Frad,z) = const = F, (36)

1.4.4 Static case

Further assumption:

Result:
No mass loss
Hydrostatic pressure stratification:

0

9z (<P> + <Prad,z>) = —(p)g (38)

Stratification in radiative equilibrium:

(Frad,») = const = F (39)

1.4.5 Coupling of radiation transport and hydrodynamics

Radiation transport — hydrodynamics:
e affects energy and momentum
e non-local coupling
e possibly short radiative time-scale — stiff terms
Hydrodynamics — radiation transport:
e transport through complex 3D structures
e spatial fluctuations of p and e; — fluctuations of opacities and source function

e Doppler shifts of wavelengths of lines



1.5 Euler equations as hyperbolic system 13

1.5 Euler equations as hyperbolic system
1.5.1 1D Euler equations in conservation form

The Euler equations () restricted to one spatial dimension,

P pu 0
9 +— +P | =10 (40)
ot | P Tax [ VY -
peik [pei+P] v 0

have the form (conservation form)

0 0
F = 41

for the quantity vector g with flux vector F',

P puv
g=|pv |, F=]| ppv+P . (42)
Peik [pei+P] v

1.5.2 Quasi-linear system

In Eq. (@I we can compute the spatial derivative and get

0 = 0
— A—g=0 43
4" 5.9 (43)
with the Jacobian oF
A="" . 44
5 (44)

A system of partial differential equations in the form of Eq. (@3] is called quasi-linear if
A=Alg ) . (45)

Tt is linear if A is constant.

1.5.3 Hyperbolic system

é linear system (43]) of PDEs is called hyperbolic if A is diagonalizable, i.e., there exists a matrix
Q with

= =_1==

AN=Q AQ (46)
and A is in diagonal form (with real numbers on the diagonal: the eigenvalues of /f\)
With the definition

=1
7:=Q ¢ (47)
Eq. ([@3]) gets the characteristic form
g , =0
— AN—q =0. 48
59 TN 5.4 (48)

This is now a set of independent equations, each of the simple form

0, 0 ,
8tq’+)\ ozl 0 (49)

A quasi-linear system with A (q,x,t) can be hyperbolic at point (q, z,t).
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1.5.4 Eigenvalues for the Euler equations

For the 1D Euler equations ([0 we get the eigenvalues

v
v+c R (50)
vV —cC

corresponding to the flow with velocity v and two acoustic waves travelling with sound speed +c
relative to the flow.
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2 The one-dimensional linear advection equation

2.1 Introduction of the linear advection equation
2.1.1 Linear advection as special case: density and momentum

In a 1D flow described by Eq. ([#0) assuming %—I; =0 and % =0 at t = tg gives for the mass

dp Opw
0o = I 51
ot + ox (51)
_Op dp
for the momentum
_ Opv | Opvw
0 = B + o (53)
dp ap v
_ (9% 9 ov 4
”(at+”ax>+pat (54)
v
= p— . 55
P (55)
2.1.2 Linear advection as special case: total energy
For the total energy we get
Opeic | Opeix v
0 = 56
at | ox (56)
= 5 <pe1 + ol ) + 2 (pelv + Pl v> (57)
15 (0p dp Ope;  Ope; v
_ Ope; dpei
ot ' ox (59)
2.1.3 Linear advection as special case
Finally, we get for the pressure P (pe;, p)
oP 0P| dps 0P| 0p .
ot ope; o ot op pes ot
oP Ope; or Op
_ _ - —p— 61
8peip< v8x>+8p pei< vax) (61)
oP
= —p—=0. 62
Vs (62)

Thus, v and P are constant in space and time. The passive advection of p and pe; is described
by the linear advection equation

dp dp
E—i—va—x—O (63)

with v = const.

2.1.4 Analytic solution of the linear advection equation

For initial condition
p(z,t0) = po () (64)

the advection equation (63]) has the general solution

p(x,t) = po(z—vt—to]) . (65)
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Proof by checking: it fulfils the initial condition and

dp  Op dpo dpo ,
8t+v8x_dm(v)+vdx1_0' (66)

2.1.5 Solution along characteristic curves

For a quasi-linear PDE

op ap
il t) =2 =
P vlpat) 22 =0 (67)
a curve c(t) with
de

or sometimes the corresponding map R — R?: ¢t — (c(t),t) is called characteristic curve or
characteristic. For the linear advection equation (G3]) these curves have the general form

c(t)y=vt+xzp . (69)

Along ¢(t) we get for a solution p of Eq. (G3)

d _ dp Opde Op ap
i W= 5 e q = o Vs (70)
The solution p is constant along the characteristic c(t).
2.2 Naive numerics: discretization attempts
2.2.1 Simple ODE: discretization
The simple ordinary differential equation (ODE)
dy
- _ 71
= Y (71)
with initial value
y (to) = yo (72)

is of first order and linear with constant coefficient a. It has the obvious solution
y(t) = yoe oli7t) (73)

For discrete time-steps
t" = Atn + to (74)

the straight-forward replacement dt — At gives the most simple discretization (explicit Euler
scheme: approximation of y by a piecewise linear curve)

Y=yt —ay At . (75)
2.2.2 Simple ODE: examples
Figure [Il shows examples for Eq. (3] for a = 1. The

criterion for stability: At <2/a (76)
criterion for positivity: At <1/a (77)

have a simple interpretation: Too large time-steps lead to conflicts with the actual curvature of
the solution.
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1.0F At=0.90 ] —  At=2.20 1
: At=0.45 | At=1.70 :
0.8} At=0.01 ' At=0.01

Figure 1: First order integration of ODE with different time-steps.

2.2.3 Simple ODE: remarks

To get accurate results with the Euler scheme (75]) the time-step At has to be very small.
In actual applications one should use a scheme that

e is of higher order (e.g. a 4th order Runge-Kutta scheme) to allow much larger time-steps
and to improve the efficiency and accuracy of the scheme

e has a build-in adjustment of the time-step to guarantee stability even for variable coefficients
e and/or is specially adapted for the type of ODE under consideration.

However, the simple scheme in Eq. (73]) could — in principle — be used.

2.2.4 Parabolic PDE: heat equation

The heat equation

dy 0%y
A ra-a 78
is a simple parabolic PDE. With the initial values
y (z,t0) = yo () (79)
and boundary values
y(@1,t) =y1(t) , y(z2t) =y2(t) (80)

it models e.g. heat flux or radiative energy transport in the (optically thick) stellar interior. In
the following examples the conductivity K is a constant.

2.2.5 Parabolic PDE: discretization

For discrete time-steps on a spatial grid

"= Atn+tg (81)
x; = Azi+ x0 (82)
the discretization in time and space
dy oyt =gy
— = -t 3
at At (83)

o? Az?
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gives the explicit Euler scheme
At
yt =yt o K (- 20 i) (85)

2.2.6 Parabolic PDE: stability

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Figure 2: Stability of Euler scheme for heat equation: AtK/Az?=0.2, 0.4, 0.6.
Examples for a simple (1,0, 1,0, ...) initial condition (red) are displayed in Fig. 2l The

criterion for stability: At/Az? < 1/(2K) (86)
criterion for positivity: At/Az? < 1/(4K) (87)

are comparable to the case of a ODE.

2.2.7 Parabolic PDE: example

Figure 3: Euler scheme for heat equation.

Examples for “spikes” initial condition (red) and periodic boundaries are displayed in Fig.
for two time-steps AtK/Ax?=0.1, 0.5 after 500 or 100 steps, respectively (blue).

The slightly too large time-step (0.5) causes the non-decaying spurious oscillations in the right
panel.

The simple discretization (85]) gives reasonable results.

2.2.8 Linear advection equation: discretization

The prototype of a hyperbolic PDE, the linear advection equation (63]), can be discretized for
discrete time-steps on a spatial grid
" = Atn + to (88)
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x; = Axi+ 29 (89)
by replacing
op Pt —pp
Zr o M 90
ot At (90)
Op P — P
=2, Gt Bl 91
ox 2Ax (91)

The result is the explicit Euler scheme (“naive” scheme, FTCS scheme)

At
pitt = plt — Az (P —Pi1) - (92)

This looks quite similar to the discretization of the heat equation (8.

2.2.9 Linear advection equation: crash

Figure 4: Euler scheme for advection equation.

Examples for “spikes” initial condition (red) and periodic boundaries are displayed in Fig. [
for two time-steps Atv/Axz=0.1, 0.5 after 50 or 10 steps, respectively (blue).
The growing oscillations render the scheme useless.

2.2.10 Linear advection equation: the lesson

Conclusions regarding the naive explicit Euler scheme (@2]) for the linear advection equation (G3])
(that worked well for the ODE and the parabolic PDE):

e The scheme is useless.
e Linear stability analysis: The scheme is unconditionally unstable.

e Stability does matter.

Why?

2.3 Basic concepts
2.3.1 Discretization in space: wishlist

e We want: representation of “real” distribution of p (, v, e;) by finite set of numbers

e We need: restriction: transformation continuous values — discrete representation
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e We need: reconstruction: transformation discrete representation— continuous values
e We get: hints for the discretization of the spatial and temporal operators

Concepts of “restriction” and “reconstruction” are often used during the construction or analysis
of a numerical scheme.

These concepts might not show up in the actual algorithm: different concepts may result in the
very same scheme.

2.3.2 Discretization in space by finite differences

Finite difference methods:

e Restriction: sampling
e Reconstruction: interpolation (by polynomials)

e Derivatives become finite differences
“Sampling” means: to go from continuous values of p(z) to a discrete set of values p; for a grid
with z; = Azi + 2o we set
pi =p (i) - (93)
2.3.3 Discretization in space by finite volumes

Finite volume methods:

e Restriction: integration over control volume
e Reconstruction: reconstruction (by polynomials)

e Derivatives can become finite differences (or can be avoided)

To go from continuous values of p(z) to a discrete set of values p; for a grid with z; = Axi+xz¢ we
integrate over the “control volume” associated to each grid point. In one dimension that might

be
zi+Ax/2

1
p=as [ @ (94)
xi—Ax/2
2.3.4 Discretization in space by other methods

Finite element methods:

e Representation by a finite set of simple base functions (piecewise polynomials) with compact
(“finite”) support

e Usually used on an unstructured grid to model the flow around complex bodies

e More often used in engineering than in astrophysics
Spectral methods:

e Representation by a finite set of harmonical functions (e.g. sine waves)
e Spatial derivatives become multiplications with wavevector
e Good for flows with small non-linear interactions

e Typically used for flows in the stellar interior (with low Mach numbers)
Smoothed Particle Hydrodynamics (SPH):

e Representation by a finite set of “large particles” that move freely
e Grid is replaced by particle positions

e Particle density translates into fluid density



2.3 Basic concepts 21

2.3.5 Discretization in space: grids

In one spatial dimension one can choose between
e Fulerian grid: fixed in space
e Lagrangian grid: moving with the flow (makes the linear 1D advection trivial)
e Hybrid grid: moving with another speed
e No “grid”: SPH (grid is replaced by particle positions)
In the following examples the grid points will be fixed (Eulerian) and equidistant.
e In multi-dimensions things become more complicated.

e Some advanced “real world” techniques (hierarchical grids perhaps with adaptive mesh
refinement) are build upon methods with simple Eulerian grids.

2.3.6 Integral form and weak solution

e Any solution of the advection equation in differential form (G3]) has to have derivatives.

e However, any function — even a discontinuous one — can be propagated along characteristics
(Sect. RT.HI).
Transformation: linear advection equation in integral form (see Fig. [l and Sect. [L20):
x1 t1
[ lotwt) = sl da 0 [ fplor,t) = plan, )] dt =0 (95)
€T

0 to

Definition: Weak solution of PDE in differential form: solution of PDE in integral form.
In smooth regions: weak solution = solution.

2.3.7 Integral form and flux centering

n+l

Pi

il ®
GE') fn+1l2 fn+1/2
£ 172 i+1/2

c
t"- ‘n
Pi
X112 X Xiv1/2
i space

Figure 5: Flux centering.

Integral form from Eq. (@3] for one cell and one time-step (see Fig. [):

Tivl iyl gnt1 gn+1
/ p(m,tn+1) dx / plaz, t") da +/ vp(mi+;,t> dt / vp(q:ifl,t) dt=0  (96)
2 2
mi—% xi—% tm tn
At Az p? At f::é At f:jé
2 2



22 2 THE ONE-DIMENSIONAL LINEAR ADVECTION EQUATION

2.3.8 Centering of quantities, fluxes, and differences

Examples for “natural centering”:
e Quantities at grid points (integer indices): e.g. pf', pi'\ 1, . .

e Spatial differences of quantities (half-integer i indices): e.g. Ap:ﬁr 1 =P — Py
2

V2

n+1
- P

1
e Time differences of quantities (half-integer n indices): e.g. Ap?+2 = p;
e Fluxes at half-integer i indices (and — in fact — preferably at half-integer n indices) to get
1
update properly centered: Ap?+2 = —% (fiT-L‘,-l — f;l_l>
2 2

Effects of “natural centering”:

o 25 s O(Ax) for 22 (2;) and 22 (wi41).

Ti+1—T5

o L1l g O(AmQ) for % (xi+;).
2

Ti+1—T5

o % is O(Az?) for % (x5).

2.3.9 Update formula in conservation form

After computing e.g. from the fluxes in the cells

o) = vl (97)

the fluxes at cell boundaries
! (98)

that characterize a method, the update can be done by the formula

At
ntl _ n __ 7" n ___fm
N N ( i1 fi,%) : (99)

This is the conservation form because the density changes only due to fluxes through the bound-
aries and is conserved otherwise,

| | o
Z?:io P?H = Zzz'l:io pi+ Etg 27{1:@0 =1t (100)
+2 2
— i At i1—1
= YAt [ i () -] aoy
i A
= S AL (F - f ) (102)

2.3.10 Stencil diagrams

n time
o
T
®
®
®
]

-2 -1 0 1 2
i space

Figure 6: Stencil diagram.
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The density p?“ at grid point ¢ and time-step n + 1 depends on values at the old time-step
n (direct numerical domain of dependence, stencil)

ik Pik1s - Pivl - (103)

This is sketched in a so-called stencil diagram as in Fig. [Gl
Looking the other way, a stencil diagram tells also which points

1 1 1
P?—Jrl 7P?j+17 e 7p?j_k (104)

at the new time-step n + 1 are influenced by p}' (range of influence).

2.3.11 Stencil diagrams: spatial centering

n time

o =
n time

o -
n time

o -

Figure 7: Stencil diagrams with different spatial centering: FTBS, FTCS, FTFS.

Figure [7] shows stencil diagrams for 3 schemes with FT (forward-time) centering and different
spatial centerings:

e BS: backward-space
e CS: center-space
e I'S: forward-space

The middle panel corresponds to the FTCS scheme from Eq. (02).

2.3.12 Stencil diagrams: centering in time

1 1 *———O 1 ’—I—‘ 1 [ ]
.—I—C = 0 *——o—0 = 0 = 0 o —]—O

-1 -1 -1 -1 ®

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
i space i space i space i space

n time
o
ntime
n time
n time

Figure 8: Stencil diagrams with different time-centering: FTCS, time-centered implicit, BTCS,
CTCS (leapfrog).

Figure [§ shows stencil diagrams for 4 schemes with CS and different time centering:
e I'T: forward-time (explicit)

e time-centered implicit: (implicit)

e BT: backward-time (fully implicit)

e CT, Leapfrog: center-time (explicit, uses 3 time planes)

In implicit schemes each value at the new time level typically depends on all values at the old
level: The full domain of dependence is larger than the direct domain of dependence.
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2.3.13 CFL condition

Due to the finite travelling speed of waves hyperbolic PDEs have a finite physical domain of
dependence.
Courant-Friedrichs-Levy condition (CFL condition):

e The full numerical domain of dependence must contain the physical domain of dependence.

The CFL condition is necessary for stability (but not sufficient).

2.3.14 Truncation error
A sufficiently smooth function can be expanded in a Taylor series:

p(x + Az, t) :Z%a—p Aa:’:p(azjt)Jrgz Az + 0 (Az?) . (105)
=0

x,t

Solving for 52 gives
O _ pla+Ant) -
oxr Ax

P L oag) (106)

Repeating this for the time derivative and applying it to an entire PDE (FTFS) gives

dp dp _ pitt = pp Piv1 = Py
O(At, A . 107
STV AT TV ap QA (107)
PDE numerical scheme truncation error

The order of the truncation error is O (At, Ax) in this case (FTFS).
A high order of the truncation error (both in At and Az) hints at good accuracy for smooth
functions.

2.3.15 Consistency — stability — convergence

e Consistency: A numerical scheme is consistent if its discrete operator (with finite differences)
converges towards the continuous operator (with derivatives) of the PDE for At, Az — 0
(vanishing truncation error).

e Stability: “Noise” (from initial conditions, round-off errors,...) does not grow.

e Convergence: The solution of the numerical scheme converges towards the real solution of
the PDE for At, Az — 0.

Lax’s equivalence theorem: “Given a properly posed initial value problem and a finite-difference
approximation to it that satisfies the consistency condition, stability is the necessary and sufficient
condition for convergence.”

. . At,Az—0
e Consistency: discrete operator L22Y ppR operator

e Stability: discrete operator does not amplify “noise”

. . At,Axz—0 .
e Convergence: Numerical solution ~ —— = real solution

Lax’s equivalence theorem: consistency + stability < convergence
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2.3.16 Derivations of donor cell scheme

Donor cell scheme (FTBS, stencil in Sect. Z33TT] example later in Sect. 2-4.5l):

n+1 no__ Aty

P =0l == (o= ri) (108)

1. Discrete differences:

e Characteristic curves: mass flows from left to right
e Replacement: CS of naive scheme — difference in upwind direction: BS

2. Characteristics + interpolation:

e Follow characteristic curve from p*?

; back in time

e Interpolate between p! ; and p} (linearly)
3. Reconstruct—Solve-Average (RSA, Godunov-type method):

e Finite volumes (reconstruction-evolution, Reconstruct-Propagate-Average)
e Reconstruct run of p within each cell (here: assume constant p)
e Use exact continuous solution for the time evolution

e Average intermediate continuous result to get single value in each cell

2.3.17 Further concepts

Important properties of a numerical scheme:

e Consistency (otherwise it does not describe the PDE)
e Stability (and therefore convergence of the solution)

e Conservativity (to prevent leakages)
Further desirable properties of a numerical scheme or code:

e Accuracy: high-order convergence in smooth regions (high-order truncation error),
good approximation even at finite resolution,
minimal artifacts near discontinuities

e Positivity (boundedness): p, P, T always positive
e Simplicity: code should be easy to understand, maintain, and extend

e Efficiency: code should be fast (on a variety of machines)

The non-linear system of the hydrodynamic equations will put additional weight on conservativity
and positivity.

2.4 Examples
2.4.1 Parameter of the following examples

Boundary conditions influence the properties of real world hydrodynamic flows.
Linear 1D advection: infinite domain without boundaries.
Actual implementation of boundary conditions in numerical experiments:

e Adding and filling ghost cells
e Number of ghost cells: depends on stencil

e In examples: periodic boundary conditions
Grid settings:
Atv

Ax
Initial condition: “spikes” (Gaussian, rectangle, triangle, half-ellipse), see Jiang & Shu (1996).

Ttotal = 200 , Nyotar = D00 = 0.4 = one revolution (109)
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2.4.2 Naive FTCS scheme

1.0 N
1 -
a 0.5

Q
£ of ® ®
- 0.0

1 ‘ ‘ ‘ ‘ ‘

2 1 0 1 2 0.0 0.2 0.4 0.6 0.8
i space X

Figure 9: Naive scheme: stencil diagram and (disastrous) test result.

Figure @ naive scheme (Euler scheme, FTCS, Sect. Z2Z9) from Eq. @2) with flux at i + 3
Ty =35 [F (o) + £ - (110)

The oscillations already seen in Fig. dl grow exponentially. After some time the numerical result
does not have the faintest resemblance to true solution.

2.4.3 Implicit centered scheme

1.0}
1k ® L I
a 0.5
© i
£ of ° ® :
= 0.0
1 . . . . .
-2 -1 0 1 2 0.0
i space

Figure 10: Implicit centered scheme: stencil diagram and test result.
Figure [} Implicit centered scheme with flux
iy = 1T (ob) + £ + 1 () + ()] (1)

The centering of the scheme in space and time seemed promising. However, the initial condition
is severely distorted.

2.4.4 BTCS scheme
Figure [T} fully implicit BTCS scheme with flux

ey =5 L) + F( )] (112)
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Figure 11: BTCS scheme: stencil diagram and test result.

The fully implicit treatment takes effect: the result looks almost smooth (with some non-decaying
small-scale wiggles) but is smeared out heavily.

2.4.5 Donor cell (FTBS) scheme

l_
[}
£ of
c
'1_ ) ) ) ) ) 1 1 1 1
2 1 0 1 2 0.0 0.2 0.4 0.6 0.8
i space X

Figure 12: Stencil and example for donor cell scheme.

Figure donor cell scheme (FTBS, 1st order upwind method, derived in Sect. 2310, with
flux

Iy =16 (13)

The result is wonderfully smooth but smeared out severely. Upwinding seems promising to achieve
stability. However, the accuracy of the scheme has to be improved.

2.4.6 FTFS scheme
Figure FTFS scheme with flux
[ =10ka) - (114)
2

Small-scale oscillations grow even faster than for the naive scheme and render the FTFEFS scheme
useless (at least for v > 0), too.
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1.0 l
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Figure 13: FTFS scheme: stencil diagram and (disastrous) test result.
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Figure 14: Stencil and example for Lax-Friedrichs scheme.

2.4.7 Lax-Friedrichs scheme

Figure [d Lax-Friedrichs scheme with flux
£ =5 [F(ofa) + FoD)] = 335 [l — o8] - (115)

The smearing is so strong that not even the number of the initial spikes is conserved. And there
are some non-decaying small-scale wiggles left.
Note: odd-even decoupling.

2.4.8 Lax-Wendroff scheme
Figure Lax-Wendroff scheme is O(Am2, AtQ) with flux

fﬁr% = 3 [F (o) + F(o1)] = 348t [pfar — ] (116)

The result is smooth with considerable overshoot (that does not much grow with time anymore).
This second order scheme might be useful for more regular initial conditions.

2.4.9 Beam-Warming scheme

Figure Beam-Warming scheme is O(Amz, AtQ) with flux

Iy =5 B = Fer)] = 528t o = oia] - (117)
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Figure 15: Stencil and example for Lax-Wendroff scheme.
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Figure 16: Stencil and example for Beam-Warming scheme.

The result is smooth with considerable overshoot (that does not much grow with time anymore).
This second order scheme might be useful for more regular initial conditions.

2.4.10 Fromm scheme

Figure [ Fromm scheme is O(Az?, At?) with flux

n _ 1 n n
fi—&—% 2 ( Lax—Wendroff,i—}—% + Beam—Warming,i—i—%) : (118)

The result is smooth with some amount of overshoot. The initial shape of the spikes is recogniz-
able. So far the best scheme, if the overshoot can be accepted.
See Sect. 2.6.01

2.5 Analysis of schemes
2.5.1 Overshoot

Figure shows the standard example after only n=20 time-steps for the Lax-Wendroff
(Sect. 24.8]) and the Beam-Warming scheme (Sect. 2.4.9) displaying overshooting post- and pre-
shock oscillations.

This Gibb’s phenomenon is closely related to overshoot of parabolic (or higher-order) inter-
polation schemes.
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Figure 17: Stencil and example for Fromm scheme.
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Figure 18: Lax-Wendroff and Beam-Warming scheme.

2.5.2 Artificial viscosity

Inserting the Lax-Friedrichs flux (I1H]) into the conservative update formula ([@9]) results in

At 1
P?H =p; — AT [UP?H - UP?—J + B [P?ﬂ —2p;" + P?—l] . (119)

FTCS scheme artificial viscosity

The last term looks like a 2nd derivative and is called artificial viscosity. In general, the flux of
any scheme can be written in the form

f=frrcs + (f — frros) : (120)
— | ———
FTCS flux flux due to artificial viscosity

Sometimes, the Lax-Wendroff flux is used as reference,

f = fLax—Wendroff + (f - fLaX—Wendroff) . (12 1)
—_—

Lax-Wendroff flux flux due to artificial viscosity




2.5 Analysis of schemes 31

2.5.3 Modified equation for the FTFS scheme I

Keeping one more term in Eq. (I05]) we get instead of Eq. (I07)) the equation

dp dp 1% 1 9% prtt—pt Pt =} N
— — 4+ -——SAt+ v —SAr == ! : . At7, A : 122
ot TV T o At gV 2T AT TV A TO(Ar A (122)
PDE 2nd ord}; terms numerical scheme rest error
modified equation
Now, the error is O(AtQ, AxQ) instead of O(At, Ax).
Le., the numerical scheme describes the modified equation
ap op 10% 1 9%
— — 4+ S At+-v—5 Ax = 12
o TVar Taar A TR g2 8T Y (123)
better than the original PDE.
2.5.4 Modified equation for the FTFS scheme I1
To replace % in the modified equation (I23)) we write
@At—i—U@A.@ S —v@ At%—v@Aa:—i—O(At? Az?) (124)
ot R Oz 9’ ’
0 (0p 0?p
&p dp
— qﬂﬁm +o ﬁm + 0 (A, Az?) (126)
At 2
= vAx <vAa: + 1> gng + O(At{ Ax2) (127)
and get for the modified equation for the FTFS scheme
dp op 1 vAt 9%p
— — 4+ -vAz|—+4+1|—=0. 128
ot ' os 2" m(Ax+>8x2 (128)

The coefficient of the additional diffusion term is positive: it describes anti-diffusion.

2.5.5 Modified equation for the FTBS scheme

A similar procedure gives the modified equation for the FTBS scheme

ap dp 1 vAt\ 0%p
Y 1-— )L =0 12
ot "V or 2" x( Ax) 02 " (129)

The coefficient of the additional diffusion term is negative if the CFL condition is fulfilled:
It describes diffusion, clearly seen in Fig. (compare the example for the heat equation in

Fig. ).

2.5.6 Linear stability analysis of original PDE

Lets see what happens to waves in the linear advection equation (63]). For the ansatz

pla,t) = A(t) e 7k (130)
with j2 = —1 we get
dA dA j
@ TR A=0 = =gk A 5 A= Age™ (131)
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p= A ej(wtsz)

with
abs(A) = abs(Ag) = const

w = vk .

Dispersion relation ([I34]): no dispersion, all waves move with the same speed v.
Eq. (I33): amplitude remains constant — without any diffusion.

2.5.7 Linear stability analysis: use

Linear stability analysis tells about stability — of linear schemes for linear equations.

Linear stability = convergence for consistent schemes (Sect. [Z3.15)).

Ansatz: for
n —jikAx
pi =e™’

with k < ko = z; we search A € C with
p?+1 — A;O? — Ae—jikAa: )

Amount abs(A) of A = damping (diffusion) or growth (instability) of waves.
Phase of A = wave speed and dispersion.
Ideally A = /At with w = vk.

2.5.8 Linear stability analysis of naive FTCS scheme
Applying ansatz (I35) to the naive FTCS scheme Eq. [@2]) gives

Az 2
Multiplying with /2% and using the Courant number

A
_Aacv

A otk _ —jikAz _ At 1 (e—j(i+1)kA:c - e—j(i—l)kA:c)

(073

we get

1 . .
A=1- ag (e_ﬂ“Am - eJkAz) =1+ jasinkAz ,

1
abs(A) = (14 a’sin® kAz)> |
abs(A) >1 for 0<kAz<m, a>0.

All waves except the ones with smallest wavenumber grow exponentially in time:

The scheme is unconditionally unstable, independent of the time-step.

2.5.9 Linear stability analysis of donor cell (FTBS) scheme

Applying ansatz ([I35) to the donor cell scheme Eq. [I08) gives, using Eq. (I38]),

A=1 —a(l —ejkAx> =1—a(l—-coskAz)+ jasinkAz ,

N

abs(A)=[1-2 (a-— a?) (1-coskAx)]2 |
~— ———
>0 for aec0,1] 20
abs(A) <1 for a €]0,1]
The donor cell scheme is stable if the CFL condition is fulfilled,
At
— 1] .
A:U v 6 [0’ ]

Note: v > 0 is required (for v < 0 use FTFS).
Note: abs(A) < 1 is possible: numerical viscosity
Note: phase(A) # vkAt: dispersion

(132)

(133)
(134)

(135)

(136)

(137)

(138)

(139)

(140)
(141)

(142)

(143)

(144)

(145)
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2.5.10 Linear stability analysis: remarks

Further issues:

e Severe restriction: linear PDE and linear scheme

e Growth of amplitude means instability — and stability otherwise

e Correct solution (constant amplitude) right at the border to instability

e Decline of amplitude indicates numerical viscosity

e Constant amplitude achievable by time-symmetric schemes (but: wiggles, dispersion)
Conclusions:

e No linear scheme is really satisfying.

2.6 Non-linear schemes
2.6.1 Godunov’s idea
Discretization paradigms (see Sect. 2.3.10):

e Finite differences: replace derivatives by differences
e Characteristics: follow characteristics back in time and interpolate at old time-level
e Reconstruct-Solve-Average (RSA): Godunov-type finite-volume scheme
RSA: three steps:
e Reconstruct p(x) from p;.
e Solve the exact problem for At: shift reconstructed function.
e Average p(x) in each cell to get p;.

Note: Exact solution (and reconstruction) can handle shocks = numerical scheme can handle
shocks.

2.6.2 Monotonicity

Transport and averaging are easy and well determined. The entire algorithm is determined by
the reconstruction scheme.

e Consistency: “reasonable” interpolation

e Accuracy: high-order polynomials

e Conservativity: proper flux formulation

e Stability, positivity: monotonicity preservation

Definition: Total variation:

TV = Z abs(pi+1 — pi) (146)

7

TVD property: A scheme has the TVD property (is “Total Variation Diminishing”) if TV does
not increase in time.
= Non-linear stability criterion.
Godunov’s theorem: linear monotonicity-preserving methods are first-order accurate, at best.
= Try a non-linear scheme.
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2.6.3 Flux of PLM schemes

e Donor cell scheme: constant p within each cell

e Improvement: piecewise linear method (PLM): reconstruction by linear function in each

cell

Once we know the cell average p; and the slope dp;, we get the flux over At from

Lo At
fii% =0 {pi + 3 dpi sign(v) [1 — abs(v) Az

x

If the boundary value in the cell is used for the entire cell we get
1 .
fii% =V qpit B dpi sign(v)

For v > 0 we get from each cell p; the flux f;_ 1.
For v < 0 we get from each cell p; the flux f;_1.
2

2.6.4 Examples: PLM: slopes with linear parameter dependence

Slopes of already encountered (linear) schemes:
Donor cell scheme (slope zero):

dpi =0

Lax-Wendroff scheme:

opi = pi+1 — pi
Beam-Warming scheme:

opi = pi — pi-1
Fromm scheme:

1
dp;i = ) (Piv1 — Pi-1)

2.6.5 PLM: slope-limiter

A slope can be written as

dpi =P <W> dpi(Lax-Wendroff)
Pi+1 — Pi

with the help of a (possibly non-linear) slope-limiter or flux-limiter

P Pi — Pi-1\ _ dpi
Pit1 — Pi dpi (Lax-Wendroff)

A related concept is flux-averaging.
Note: The slope-limiter for the Lax-Wendroff scheme is 1.
Note: The slope-limiter for the donor cell scheme is 0.

2.6.6 PLM scheme with Minmod slope-limiter

Figure PLM scheme with Minmod slope (minimum allowed 2nd order slope),

d; = min(max(p; — pi—1,0),max(pi+1 — p;,0)) +
max(min(p; — p;—1,0), min(p;+1 — p;,0)) .

See Sect. 2.4.10

(147)

(148)

(149)

(150)

(151)

(152)

(153)

(154)

(155)
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Figure 19: Stencil and example for PLM scheme with Minmod slope-limiter.
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Figure 20: Stencil and example for PLM scheme with vanLeer slope-limiter.

2.6.7 PLM scheme with vanLeer slope-limiter

Figure PLM scheme with vanLeer slope (harmonic mean of slopes),

i = (156)

Pi—Pi—1  Pi41—Ps

{;( — ) if (pi — pi—1) (pit1 —pi) >0

elsewhere
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2.6.8 PLM scheme with Superbee slope-limiter

n time
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Figure 21: Stencil and example for PLM scheme with Superbee slope-limiter.
Figure 2T} PLM scheme with Superbee slope (maximum allowed 2nd order slope).
dpi = [sign(pi — pi—1) + sign(pi+1 — pi)] (157)

. 1
min| abs(p; — pi—1) ,abs(pi+1 — pi) , 5 max(abs(p; — pi—1) , abs(pit1 — pi))
2

2.6.9 PPM scheme

ir a 0.5} i
q, ! ;
E ole—eo—o o—=o -
= 0.0} J
_1_ r
3 2 1 o 1 2 3 00 02 04 06 08
i space X

Figure 22: Stencil and example for PPM scheme.

Figure PPM scheme with piecewise parabolic reconstruction. See Colella & Woodward
(1984).
2.6.10 WENO scheme
Figure WENO scheme with weighted essentially non-oscillatory reconstruction (with 6th
order polynomials, without any Runge-Kutta sub-steps). See e.g. Jiang & Shu (1996).
2.6.11 Scheme with Superbee slope, only boundary value used

Figure[24t Scheme with Superbee slope where Eq. (I48]) was used for the flux instead of Eq. (I47).
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Figure 23: Stencil and example for WENO scheme.
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Figure 24: Stencil and example for modified scheme with Superbee slope.

2.6.12 Further improvements
e (W)ENO schemes can have very high order.

e (W)ENO schemes can be complemented by high-order Runge-Kutta steps.
e PPM: non-linear criteria can help to decide if e.g. shocks should be sharpened further.

e Subcell resolution can resolve the position of discontinuities within cells.

At some point only a finer grid helps:
e More grid points
e Non-equidistant grid

e Adaptively refined grid
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3 Non-linear advection: Burgers’ equation

3.1 Introduction of Burgers’ equation
3.1.1 Viscous and inviscid Burgers’ equation

Viscous Burgers’ equation:

ov N d10? 0%
e — e
ot Ox Ox?
inviscid Burgers’ equation in conservation form (with flux $v?)
ov N d5v? 0
ot or
quasi-linear form
ov n ov 0
S tv—=0,
ot Ox

and integral form

o bl 1
/ [v(z,t1) —v(x, to)] dx +/ |:’U2(l‘1,t) — —v*(x0,t) | dt =0
20 to L2 2

e It resembles the linear advection equation (63]).
e However, it is non-linear with v (z,t) instead of v = const.

e It describes the transport of v with velocity v.

3.1.2 Solution along characteristic curves

Characteristics already discussed for a quasi-linear PDE (Sect. 2.1.0).
Velocity v is not globally constant anymore.
However, it is constant along characteristic

c(t) =v(xg) t+ o .

That allows a graphical “solution” by using characteristics.

3.1.3 Compression waves and shocks

A compression wave with

@
Ox

steepens with time and characteristic curves can cross: multiple-valued solution?

<0

(158)

(159)

(160)

(161)

(162)

(163)

e The viscous Burgers’ equation (I58) is a parabolic PDE and has a unique solution for all

times ¢ > 0.

e Vanishing viscosity: We look for a solution of the inviscid Burgers’ equation that is a

solution of the viscous Burgers’ equation in the limit € — 0.

e Instead of a multiple-valued solution we get a discontinuity where the characteristics end.

e Discontinuities (shocks) are unavoidable for % < 0.
e Characteristics run into a shock from both sides.
e Discontinuities should be allowed in the initial conditions.

e We need to find weak solutions.
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t+At
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f(a) f(a,)

time

q

X X+AX
space

Figure 25: Jump across shock.

3.1.4 Shock speed 1

A shock with speed s travels over an infinitesimal time At an infinitesimal distance
Ax = s At
(see Fig. 25)). Integration of the PDE

dq  9f(q)
ot T o

over At and Az results in
r+Ax t+At
| et a0 - 0lde + [ (ol + Ar.0) - flala )] de =0

3.1.5 Shock speed II

39

(164)

(165)

(166)

During this time At the states g1, ¢, and fluxes f(q), f(q:) on the left and right do not change

(much) and we get
Az q — Az g+ At f(q:) — At f(q) = O(AL?)

For Az = s At and At — 0 we get the Rankine-Hugoniot jump condition
s (e —aq) = fla) — f(a)
which gives for the shock speed in general

fla) — fla)
qdr — q1

S =

and for Burgers’ equation

1.2 1,2
2Ur — 3V 1
s=2——="=—(v,+1v) .
Vr — ) 2 (v )
3.1.6 Expansion waves
Smooth regions with
v -0
ox

produce a rarefaction wave or expansion wave.

e What about steps with vjef; < vpight?

e Expansion shock with characteristics running out of it is weak solution.

(167)

(168)

(169)

(170)

(171)

e But: any small but non-zero viscosity would smooth the step and cause a rarefaction wave

(or rarefaction fan).
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e Only solutions that fulfil an entropy condition are allowed.

Lax entropy condition: For a convex scalar conservation law, a discontinuity propagating with
speed s satisfies the Lax entropy condition if

Vleft > S > Uright - (172)
e Therefore: expansion shocks are not allowed.

e An entropy condition destroys time-reversibility.

3.1.7 Similarity solutions I
The quasi-linear PDE

9q  df dq
—+—=——=0 173
ot * dg Ox (173)
for the Riemann problem
- q if <0
R (174)

has similarity solutions of the form

a@,t) =a(3) - (175)

3.1.8 Similarity solutions II
Inserting this ansatz (I73) into Eq. (I73)) gives for ¢ > 0

x ., df 1 _
with the solutions . .
d’(;) =0 = (j(;) = const (177)
or A
1(2) %0 = V() -
q (t 7 aq \1\3 / (178)
which for Burgers’ equation gives
v = % . (179)

This solution ([I79) describes the state within a rarefaction fan whereas Eq. (I'T7) applies every-
where else (outside of rarefaction waves and shocks).

3.1.9 Classification of Riemann problems

Figure 26: Different Riemann problems for Burgers’ equation.
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e A Riemann problem consists of a step at x = 0 in ¢ with constant states ¢ and ¢, on the
left and right side, see Eq. (I'T4).

e Figure shows different types of solutions with a shock (top) and a rarefaction wave
(bottom).

e Except for the transonic rarefaction wave the flux across the boundary (dashed line) is
either f(q) or f(qv).
3.2 Numerical examples
3.2.1 Velocity at cell boundary

e With velocity possibly varying from cell to cell one needs to define an appropriate value at
the cell boundary.

A logical choice is the shock speed from Eq. ([69) which results in
_ rrera AR (180)

d .
e if ¢y = qf

or for Burgers’ equation from Eq. (I70) simply
1
Vitl =5 (vff +vi) - (181)

3.2.2 Flux-splitting

Both signs of the velocity are now possible.
Flux-splitting allows the use of schemes written for one sign of the velocity, still guaranteeing
proper upwinding,

fla)=f"(a)+f (q) (182)
with af+ af-
—— >0, =—<0. 183
20, < (183)
E.g.: extension of FTBS scheme to Courant-Isaacson-Rees scheme (CIR, now stable for both
signs of v):
fpl if v,,1>0
-, T
2 Pit1 i+% >
CIR for Burgers’ equation:
n % (Uzn)Q if UH—% >0 (185)
o 3 (”z"+1)2 if v;;1 <0

3.2.3 Example: small-amplitude wave

Even a small-amplitude wave that initially behaves like a linear wave (left panel in Fig. 27) turns
later into a shock wave (right panel in Fig. 7).

3.2.4 Example: Gaussian and conservativity

Burgers’ equation allows also the non-conservative discretization using upwind values

At
1
v;H_ =i — EU? (Uzn - 0?71) (186)
which results in the time-evolution in the left panel in Fig.
The right panel shows the result with the conservative scheme (I85]).
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Figure 28: Non-conservative scheme (left), conservative scheme (right).

3.2.5 Lax-Wendroff theorem
e The initial evolution of the schemes (Fig. B8)) is rather similar.

e However, with the non-conservative scheme, the shock moves with the wrong speed and the
non-conservation of the area under v is obvious.

e Remember: the derivation of the Rankine-Hugoniot jump condition in Sect. B.1.5 used the
conservation of ¢ across the shock to derive the shock speed.

Lax-Wendroff theorem: If the numerical solution of a conservative scheme converges, it converges
towards a weak solution.

e Note: an alternative to shock capturing where the scheme itself is able to handle discon-
tinuities is shock tracking where the positions of shocks are explicitly followed to allow a
different numerical treatment in smooth regions and near discontinuities.

3.2.6 Example: step-function and conservativity

Figure 29 displays the outcome for a test with an initial step-function (a Riemann problem) for
the non-conservative scheme ([I86]) and the conservative scheme (I85]).

e (Clearly, the non-conservative scheme fails again to get the shock speed right.

e The wrong solution is not indicated by any helpful wiggles or numerical artifacts.



3.2 Numerical examples 43

1.0} | | | | | 1.0} | | | | |
> 0.5H — > 0.5+ i
0.0f : 0.0f
04 02 00 02 04 04 02 00 02 o4
X X

Figure 29: Non-conservative scheme (left), conservative scheme (right).

3.2.7 Example: expansion shock and rarefaction fan

10; f 10?
05F ] 05F ]
> 0.0F 1> oof ]
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-1.0 - -1.0 -
04 02 00 02 04 04 02 00 02 04
X X

Figure 30: Expansion shock (left) and — correct — rarefaction fan (right).

The Riemann problem in Fig. should result in a rarefaction fan (right panel).

e Instead, the CIR scheme from Eq. (I83]) produces a stationary expansion shock that violates
the entropy condition ([I72).

e The solution by the CIR scheme is stationary because its flux (f = %) is the same every-
where, even if the velocity (v = £1) changes sign.

3.2.8 Entropy production by artificial viscosity

A possibly way to prevent the violation of the entropy condition (I72) is to produce entropy with
an extra (artifical) diffusion term added to the CIR flux (I8 according to

g;mm—ewh—ﬁ). (187)

n —
it3
However, now the parameter € has to be tuned to be large enough to give the correct weak solution

while not smearing it more than necessary.
The viscosity parameter € could be replaced e.g. by the function

e=¢ (v, — o)’ (188)

to confine the extra viscosity to regions where the gradient is really large.
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3.2.9 Entropy fix

e For most Riemann problems (Fig. 26) the CIR scheme (I8H) actually produces initially the
exact result.

e Only for a transonic rarefaction wave (as in the last example in Fig. BQ) it differs.

e Godunov’s idea: Solve a Riemann problem (= Riemann solver) at every cell boundary and
derive the corresponding flux over the boundary.

e For Burgers’ equation the flux through the stagnation point (v = 0) in a transonic rarefac-
tion wave is f = %1}2 =0.

= Extend the CIR scheme to get a Godunov-type scheme by defining

%(U?)Q if vi+%>0 and v; >0
2 .
z?:té =9 3 ()" if Vipr <0 and vy <0 (189)
) if v; <0 <

—

The additional branch is an entropy fix to the CIR scheme.

3.2.10 Concepts from the linear world

e Consistency: the same
e Conservativity: the same (now even more important)
e Stability

o Linear stability: not directly applicable (linearization possible?)
o Total variation diminishing (TVD): applicable

o Alternative: base scheme on concepts that work in the linear case and perform lots of
tests for the non-linear PDE

e Accuracy: slope-limiter schemes need adaption

3.2.11 Transformation of shock speed formula

Velocity at cell boundary from shock speed (Eq. (I69) and Eq. (IS0), entropy fix ignored),

no) — f(qh
Virl = f(qull) frfql ) (190)
4it1 — 4
A} )+Aa fAa)+fa
_ f(qszrl) _ ( ) 2( +1) _ f(qln)_ ( ) 2( +1) (191)
no_ q;' +ai n _ q;"+4;5
Qi1 2 q; 2
g ~ far)+4(ara)
ql\lpi+% 2
= - PR (192)
qiupi+% -2

with the upwind index

i+ 1 ifo <0

il >
i+35

7 if v.,1>0
Z'upi-iri a { o ' (193)
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3.2.12 Second-order extension of flux formula

Resolving Eq. (I932) for the upwind flux that we need as flux ([I84]) for the CIR scheme gives

flaf) + flafyy) g+ g

no__ n _ i i+1 n % i+1

i+l = f<qiupi+§> - 9 TVl Gy 7 9 : (194)
flux average linear (ized) advection

Remember: This is exactly the simple upwind (CIR) flux.
However, the second term looks like linear advection and suggests to apply a higher-order (eg.
slope-limiter) scheme to the localized advection problem for

d :qj—qizﬁ for j=i—1, 4, i+1,i+2 . (195)
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4 One-dimensional non-linear hydrodynamics

4.1 New Difficulties
4.1.1 A coupled non-linear system

e The 1D hydrodynamics equations ({) are a non-linear system of 3 coupled equations.
e There is a little bit from the linear advection equation:

o Derivation of the characteristic form ({48]).

o Linear advection as special case (see Sect. Z.1.3)).

There is a little bit from Burgers’ equation:

o Shocks can arise from smooth initial conditions.
o Discontinuities in the initial conditions can produce rarefaction waves.

o We need to look for weak solutions (that satisfy an entropy condition).

Characteristics are not necessarily straight lines.

The domain of dependence is not only a single point but an interval. However, it is bounded.
Therefore explicit methods (with limited full numerical domain of dependence) are often
adequate.

4.1.2 Positivity of density

To compute the velocity from momentum and density via

pv
v=— 196
; (196)

requires
p>0. (197)

An overshoot of the density to non-positive values is now (usually) disastrous.

4.1.3 Positivity of pressure

The pressure P (e, p) depends on the conserved quantities via

2
€ v
P(p, pv, peik>=P<pplk— <gp; , p) . (198)

An overshoot in velocity may lead to negative pressure (or an attempt to access values beyond
the limits of a tabulated equation of state).

e This restriction is so severe that in some cases the conservation of total energy might be
given up in favor of a (non-conservative) formulation where the positivity of the internal
energy is guaranteed.

e The total variation of e.g. density, pressure,...of the true solution can increase — TV
stability arguments no longer hold.
4.1.4 Where is upwind?

Bringing the Euler equations into characteristic form resulted in waves with different velocities

(Sect. [L5A4),
v—ec, v, VFcC . (199)

Which one should be used to determine the upwind direction?
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4.2 The Riemann problem for the 1D Euler equations
4.2.1 The Riemann problem

The state on each side described by 3 values.
Each wave family can cause a discontinuity:

e Sound waves can cause shocks or rarefaction waves.
e The material flow (entropy wave) can have a contact discontinuity.

The solution of Riemann problem (for convex — simple — EOS) can comprise:

e ( or 1 contact discontinuity,
e 0, 1, or 2 shocks,

e 0, 1, or 2 rarefaction waves; not more than 2 (shocks + rarefaction waves).

4.2.2 Rankine-Hugoniot conditions

The Rankine-Hugoniot jump conditions (see Sect. B0 for the 1D Euler equations (0), describ-
ing a shock with speed s become

s(pe—p) = pv,—py (200)
s (pv, —pv) = (pov+ P), — (pvv + P), (201)
s (peiky — peiky) (lpeix + P] v), — ([peik + P] v), (202)

They can only be fulfilled for certain combinations of ¢ and g;.
An arbitrary Riemann problem typically causes more than one jump.

4.2.3 Example: Sod shock tube

1.0 N T T T =]

PP ]
Cye= 1.OE+03 1
t=0.228 1
n=228
n,=100

08l

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0. 0.4

Figure 31: Sod shock tube: analytical (lines) and numerical (circles) solution. Velocity, pressure,
density, internal energy.

The Sod shock tube (Fig. BIl) is a Riemann problem with:
(p, P,v), = (1,1,0), (p, P,v), = (1/8,1/10,0).
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4.2.4 Jumps in the solution of the Sod shock tube problem

The similarity solution of the Sod shock tube problem contains
e a rarefaction wave going to the left,
e a contact discontinuity travelling slowly to the right,
e a shock wave moving fast to the right.

For the all individual waves the upwind direction is clear.

Only in the (possible) case of a transonic rarefaction wave “upwind” is not obvious However,
here an entropy fix has to be applied, anyway.
4.3 Riemann solvers

4.3.1 Godunov-type schemes

Godunov’s idea: solve a separate Riemann problem at each cell boundary (Fig. B2)). RSA: three

Figure 32: Many Riemann problems.
steps:
e Reconstruct p(z), pv(z), peik(x) from p;, pv;, peix; (constant values within cell).
e Solve the Riemann problems for At (and compute fluxes across cell boundaries).
o Average p(x), pv(x), pei(z) to get p;, pvi, peik; (apply the conservative update formula).

The concept is very useful, but the scheme is too diffusive in its original form.

4.3.2 Riemann solvers and higher-order schemes

Combination of Godunov’s concept (local solution of fully non-linear Riemann solvers) with high-
order reconstruction (solution averaging):

e Godunov (1959): Exact Riemann solver (with constant reconstruction)

e Van Leer (1979): MUSCL (Monotone Upwind Schemes for Scalar Conservation Laws):
linear reconstruction: approximation of piecewise-linear Riemann problems by piecewise-
constant Riemann problems including slope-limiter, solution of the Lagrange equations,
Eulerian remapping.

e Colella & Woodward (1984): PPM (Piecewise Parabolic Method): piecewise parabolic
reconstruction via primitive functions, contact steepening.

Godunov-type schemes are conceptionally appealing.
The improved high-resolution methods give excellent results.
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e However, they are relatively complex and require a lot of operations per grid cell.
e Approximate (linearized) Riemann solvers may serve as well in splitting the flow into waves
with different characteristic velocities and upwind directions.
4.4 Approximate (linear) Riemann solvers
4.4.1 Linearized flux

A linearized Riemann solver uses a linearization of the vector flux F' in Eq. (Il around reference
value gy to bring it into a form similar to the scalar Eq. (I94),

F = F(qref) + %Z(Qref) (q - Qref) + O((q - qref)2> . (203)

Dropping the 2nd order term and choosing xef =z, 1 we get
2

1
Trot = Qi1 ~ 5 (@i +div1) (204)
1
F(qrer) ~ 5 (F(qi) + F(git1)) - (205)
We remember from Sect. that for the Jacobian
= OF
Ay = 9q (Qref) (206)

there is a matrix (31 41 that brings it into diagonal form
2

/_\i+% = Qi-&-% AH—% Qz’+§ ) Ai+% = Qi—i—% /_\z‘+% Qz+% (207)
4.4.2 Linearized Riemann solver
The linearized flux vector becomes
F(q;) + F(qi+1) = = =—1 qi + qiv1
centered (naive) fluxes original ﬂ;ctuations

g

fluctuations of characteristic waves

fluxes of characteristic waves

g
flux corrections

Note: /:\l 41 is a diagonal matrix with the characteristic velocities on the diagonal.

2
Note: The fluxes of the characteristic waves are the result of a localized linear advection problem.
A higher-order correction term (with slope-limiter) could be applied.

4.4.3 Examples of schemes
Roe (1981):
e Scheme (essentially) as above.

e With clever choice of matrix A, so that the approximate Riemann solver becomes exact for
simple waves (only one shock or only one contact discontinuity).

e Needs entropy fix.

e The fluctuations are taken from the primitive rather than the conservative variables.
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HLLE (1983, 1988):

e Uses only the two waves with largest and smallest characteristic velocity.

4 ONE-DIMENSIONAL NON-LINEAR HYDRODYNAMICS

e The region in between is approximated by a single state.

e The scheme is simple, more robust but also more dissipative than Roe’s scheme.

4.4.4 Example: Sod shock tube with Roe solver, constant

T T T
Constant
Clr\tel
t=0.228

1.0

02f

= 1.0E+03 |

T

Figure B3} numerical solution of the Sod shock tube problem with constant reconstruction.

Figure 33: Sod shock tube: constant reconstruction.

4.4.5 Example: Sod shock tube with Roe solver, Minmod slope

Figure B& numerical solution of the Sod shock tube problem with PL reconstruction and

Minmod slope-limiter.

Figure 34: Sod shock tube: Minmod slope-limiter.
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Figure 35: Sod shock tube: vanLeer slope-limiter.

4.4.6 Example: Sod shock tube with Roe solver, vanLeer slope

Figure numerical solution of the Sod shock tube problem with PL reconstruction and vanLeer
slope-limiter.

4.4.7 Example: Sod shock tube with Roe solver, Superbee slope
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Figure 36: Sod shock tube: Superbee slope-limiter.

Figure numerical solution of the Sod shock tube problem with PL reconstruction and
Superbee slope-limiter.
4.4.8 Example: Sod shock tube with Roe solver, PP reconstruction

Figure BT numerical solution of the Sod shock tube problem with PP reconstruction.

4.5 Alternative concepts

(Approximate) Riemann solvers are a way to account for upwinding and shock capturing in a
conceptionally elegant manner.
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Figure 37: Sod shock tube: PP reconstruction.
However, they are somewhat involved and there other (simpler? older?) concepts around, which
make use of
e von Neumann-Richtmyer viscosity
o Runge-Kutta steps

e operator-splitting of advection and pressure terms
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5 Applications

5.1 Composing operators
5.1.1 Operator adding versus splitting
Let the time evolution of ¢ be determined by two operators A and B according to

dg
5 =A@+ Bla) . (209)
Suppose there are separate numerical schemes available that allow to compute the individual
updates

it =g "+ ALA(GY) gt ="+ AtB(¢") . (210)

Now, the two schemes could be combined in two ways, e.g. by operator adding

¢t = "+ At A(q") + At B(q") (211)
or Godunov operator splitting
44" = ¢"+AtA(g")
ity = di+ALB(gy") - (212)

The results are generally not the same. Both methods have advantages/drawbacks.

5.1.2 Godunov versus Strang operator splitting

The Godunov operator splitting from Eq. (2I2]) where all operators are applied cyclically and
with the same time-step might be improved in some cases by Strang operator splitting

” At
q;lf/z = ¢"+ > A(q")
T,k o T, T,
Uajorp = Qajp T AB(ay))
At
+1 _ T, %K T, %%
Gatp = dupep 9 Aldaayp) - (213)

5.1.3 Steady-state solutions with operator adding or splitting
Suppose both operators A and B are zero,
A=B=0 (214)

resulting in individually stationary solutions (eg. hydrostatic and radiative equilibrium),

att=q", at=q", (215)

which gives for both operator combination methods

diip=d" - (216)
However, if the individual operators are non-zero but cancel each other,

B=-A#0 (217)
the adding of the operator gives equilibrium Eq. (216]), while operator splitting

¢i" = ¢"+ALA@Q")
Gita = dy - AtAGT) (218)

This is not necessarily a stationary solution. Here, operator adding is superior.
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5.1.4 Linear stability of operator adding or splitting

If both operators A and B are linear with amplification factors indicating stability

Va<l, Vp<I1 (219)
then the amplification factor of the scheme combined by operator splitting is

Varp=VaVp <1 (220)

implying stability of the combined scheme.
The adding of the operators requires a re-analysis of the combined scheme. It might be stable or
not, even if Eq. (ZI9) applies.
The individual analysis of a non-linear hydrodynamics and a complex non-local radiation trans-
port scheme is difficult enough. It is convenient to have a combination method, that — at least in
some simple cases — guarantees the stability of the combination

Here, operator splitting is superior.

5.1.5 Going multi-dimensional

Directional splitting or dimensional splitting is simply the technique to apply operator splitting
to the spatial derivatives in the Euler equations:

0 0 0

—a+—F(q)+ - -F(q) =0 221
54T g, F @)+ 3y (@) (221)
becomes
n,* n At n n
e A UG R CY)
qX—:}y’i = qx; — Ky <f<qX’,z+§> - f(%(}-%)) . (222)

Directional splitting in general works very well and allows the application of powerful algorithms
developed for 1D problems.

However, there are cases when a small amount of additional multi-dimensional tensor viscosity
is necessary to damp spurious oscillations (even with PPM scheme).

5.2 Coupling of hydrodynamics and radiation transport
5.2.1 Coupling

If possible one would try to avoid constructing a merged hydrodynamics plus radiation transport
scheme.

Instead one constructs and tests a hydrodynamics and a radiation transport scheme separately.
The coupling can be done via operator splitting or adding.

Often radiation transport requires small time-steps to achieve stability.

These can be handled by

e sub-steps for the radiation transport (many small radiation steps per large hydrodynamics
step)

e or by an implicit treatment of the radiation transport (while the hydrodynamics operator
is still explicit).
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5.2.2 Stability requirements

Stability requirements on radiation transport operator:
1. Stability of integration along ray (to avoid problems like in Sect. 2Z2.2])
2. Stability of (accelerated) A iteration
3. Stability of time-update

Note: Requirement 2 does not occur if the source function is independent of intensity (LTE).
Note: Requirement 1 does not occur if e.g. diffusion approximation is used.
Note: Requirement 3 is always there.

Sub-steps

time-step control

5.2.3 Approximations

Simplified treatment of radiative energy transfer during the simulation:
e Ignoring of radiation.

e Isothermal flow (no energy transport equation).

Local cooling (in the optically thin).

Diffusion approximation (in the optically thick).

Non-local radiation transport along rays, but LTE and grey opacities.
e Non-local radiation transport along rays, but LTE and binned opacities (ODF's).

More sophisticated a posteriori radiation transport for spectrum synthesis.

5.3 Improvements
5.3.1 Non-Cartesian and/or refined grids

Possible numerical grid improvement techniques:
e Eulerian — Lagrangian
e Equidistant — non-equidistant

Structured — unstructured

e One — many hierarchical
e Fixed in time — adaptive

e Grid — no grid: SPH

5.3.2 Optimization strategies

All modern computers can calculate (within the processor) much faster than they can access
external memory.

Techniques to improve the performance of algorithms have to take this into account (simplified
crash course):

e Efficient use of registers: Lots of operations with the same scalars are good.

e Cache optimization: Lots of operations with the same vectors are good.
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e Vectorization (on dedicated vector machines or PCs): “Smooth” access to arrays and simple
operations are good.

e Parallelization: Local access to array regions is good.
Hydrodynamics and parallelization:

e A bounded numerical domain of dependence allows straightforward domain decomposition
and distribution over different machines.

Radiation transport and parallelization:

e Non-local radiation transport (integration along rays) requires more communication be-
tween processors and limits the performance on parallel computers.
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Nomenclature

A.1 Quantities

symbol
At
Ax
€i
€ik
€ikg
€ikb

@ —I3 ™ WY S

57

quantity

discrete time-step

grid size

internal energy density (per mass unit)
total (internal + kinetic) energy

total (internal + kinetic + potential) energy
total (internal + kinetic + magnetic) energy
frequency-dependent intensity

normal vector of length unity

frequency

pressure

mass density

internal energy density (per volume)

unity tensor

velocity vector

Table 1: Symbols and descriptions for quantities.

Vector notation

vector operation description

55— S product of scalars

sV — v scalar times vector gives vector

VS — v

sT—T scalar times tensor gives tensor

Ts—T

VU — S scalar product of vectors gives scalar
viv—T tensor product of vectors gives tensor
Tv—w tensor times vector gives vector

v- T — vl “scalar product” of vector and tensor gives “transposed” vector
TT—-T tensor product (“matrix multiplication”)
vv — 777

Table 2: Vector notation for scalar s, vector v, and second-rank tensor T
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B Schedule

e Lecture 1: Monday, 2010-01-25, Sect. [L11]
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