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ABSTRACT

With the computer code CO5BOLD, a three-dimensional
magnetohydrodynamic simulation of the integral layers
from the convection zone to the chromosphere has been
carried out. The MHD extension of CO5BOLD, which is
a combination of an approximate Riemann solver with a
constrained transport method, is briefly described. The
simulation is intended to represent magnetoconvection
in a quiet network-cell interior. The following prelimi-
nary new results are obtained: The chromospheric mag-
netic field is marked by strong dynamics with a con-
tinuous reshuffling of magnetic flux on a time scale of
less than 1 min. Rapidly moving filaments of stronger
than average magnetic field form in the compression zone
downstream and along propagating shock fronts that are
present throughout the chromosphere. These magnetic
filaments that have a field strength rarely exceeding 40 G,
rapidly move with the shock waves and quickly form and
dissolve with them. The picture of flux concentrations
that strongly expand through the photosphere into a more
homogeneous, space filling chromospheric field remains
valid. With the present new code, it became for the first
time possible to extend simulations of magnetoconvec-
tion of the surface layers into the chromosphere.
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1. THE NUMERICAL METHOD

The simulations were made with the CO5BOLD-code,
which was recently extended to include magnetic fields.
The code solves the coupled system of the equations
of compressible magnetohydrodynamics in an external
gravity field and non-local, frequency-dependent radia-
tive transfer. The code was developed mainly by Bernd
Freytag and Matthias Steffen based on long-term experi-
ence gathered with a previous radiation hydrodynamics
code, designed to simulate two-dimensional solar con-
vection. The main features of the code are the use of

a realistic equation of state, including partial ionization.
Radiative transfer, hydrodynamics and additional turbu-
lent diffusion are treated separately using operator split-
ting. Here, we only describe the MHD extension of
CO5BOLD.

1.1. The MHD equations

The ideal MHD equations describe the flow of an per-
fectly conducting fluid with zero viscosity and thermal
conductivity and its interaction with a magnetic field.
These equations express the conservation of mass, mo-
mentum, energy and magnetic flux. Including gravity,
they can be written in conservative form as
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where the vector of conserved variables U, the flux tensor
F and the source terms due to gravity S are
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ρ is the mass density,v is the velocity vector,B is the
magnetic field vector,p is the gas pressure,g is the grav-
itational acceleration and I is the3 × 3 unit matrix. The
total energyE is given by

E = ρǫ + ρ
v · v
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whereǫ is the thermal energy per unit mass. The addi-
tional constraint of no magnetic monopoles,

∇ · B = 0, (6)

must also be fulfilled. The MHD equations must be
closed by an equation of state which gives the gas pres-
sure as a function of the density and the thermal energy
per unit mass

p = p(ρ, ǫ) . (7)

1.2. Spatial and temporal discretization

The magnetohydrodynamic equations are solved on a
fixed cartesian grid allowing non-equidistant meshes.
The multidimensional problem is reduced to 1-D prob-
lems by dimensional splitting. Each of these 1-D
problems is solved with a Godunov-type finite-volume
scheme using an approximate Riemann solver modified
for a general equation of state and gravity. The extension
to second order in space and time is done using linear re-
construction for the primitive variablesρ, v, B, p andρǫ
followed by a Hancock predictor step (Toro, 1999).

1.3. The Riemann solver

The original hydrodynamics step of CO5BOLD uses a
Riemann solver of Roe type. For MHD, we decided to
use a HLL-solver instead, because the Roe solver does
not guarantee the positivity of the density and the pres-
sure. This problem, which may occur also for hydrody-
namics, gets worse for MHD. To compute the pressure
using the equation of state, Eq. (7), one has to subtract
the kinetic and magnetic energy from the total energy,
Eq. (5). If the thermal energy is much smaller than the
total energy, small errors in the total energy lead to large
errors of the thermal energy which may turn the pressure
to negative values, especially in regions of strong mag-
netic field and low plasma beta. Values ofβ ≈ 10−4 are
common in chromospheric regions.

However, it can be shown, that the HLL solver ensures
the positivity of the density and the pressure if the ex-
act solution of the Riemann problem has positive den-
sity and pressure (Einfeldt et al., 1991). This is the case
for the hydrodynamic equations. For MHD, this is true
only if the normal component of the magnetic field has
no jump. For 1-D problems, the divergence-free condi-
tion forces the normal component of the magnetic field
to be constant. For multidimensional problems, jumps
in the normal component of the magnetic field are un-
avoidable using cell centered magnetic fields, even if the
divergence-free condition is fulfilled in a discrete sense.
It was shown by Janhunen (2000), that allowing magnetic
monopoles and taking into account their contribution to
the Lorentz-force, an additional source term occurs only
in the induction equation. Using a special discretization
of this source term, the HLL-solver for the MHD equa-
tions is positive (Janhunen, 2000).

1.4. The constrained-transport step

A special requirement of MHD-calculations is the en-
forcement of the divergence-free condition, Eq. (6), for
the magnetic field. Violating this condition can lead to
unphysical forces which can degrade the solution (Brack-
bill & Barnes, 1980).

After performing the 1-D substeps, the updated magnetic
field is not divergence-free, even if it was before the up-
date. Therefore, an additional step for the update of the
magnetic field is required. In our scheme, we use the flux-
interpolated constrained transport of Balsara & Spicer
(1999). This method uses a staggered grid, where the
magnetic fields are stored at the cell boundaries whereas
the remaining hydrodynamic variables are located at the
cell centers. Because the 1-D updates require magnetic
fields located at the cell centers, the magnetic field at
the cell centers is computed from the values of the cell
boundaries using simple arithmetic averaging. After the
1-D substeps are performed, the updated values of the
cell-centered magnetic field are discarded. Instead, the
boundary located magnetic field values are updated using
the fluxes from the 1-D substeps in such a way, that a dis-
crete version of the divergence-free condition, Eq. (6), is
fulfilled.

2. FIRST SIMULATIONS

A first three-dimensional magnetohydrodynamic simula-
tion of the integral layers from the upper convection zone
to the middle chromosphere was carried out. The compu-
tational domain extends over a height range of 2800 km
of which 1400 km reach below the mean surface of op-
tical depth unity and 1400 km above it. The horizontal
dimensions are4800 × 4800 km. With 1203 grid cells,
the spatial resolution in the horizontal direction is 40 km,
while in the vertical direction it is 20 km throughout
the photosphere and chromosphere increasing to 50 km
through the convection-zone layer. The lateral boundary
conditions are periodic in all variables, whereas the lower
boundary is “open” in the sense that the fluid can freely
flow in and out of the computational domain under the
condition of vanishing total mass flux. The specific en-
tropy of the inflowing mass is fixed to a value previously
determined so as to yield solar radiative flux at the up-
per boundary. The upper boundary is “closed” so far, i.e.,
reflecting boundaries are applied to the vertical velocity,
while stress-free conditions are in effect for the horizon-
tal velocities, viz.,dvx,y/dz = 0. The vertical derivative
of the specific internal energy is zero.

The MHD simulation starts with a homogeneous, ver-
tical, unipolar magnetic field of a flux density of 10 G
superposed on a previously computed, relaxed model of
thermal convection. This flux density ought to mimic
magnetoconvection in a network-cell interior. The mag-
netic field is constrained to have vanishing horizontal
components at the top and bottom boundary but lines of
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Figure 1. Three horizontal sections through the three-dimensional computational domain. The color coding displays the
logarithm of the absolute magnetic field strength, with the individual scalings indicated in the color bars.Left: Bottom
layer at a depth of 1210 km.Middle: Layer 60 km above optical depthτc = 1. Right: Top, chromospheric layer in a
height of 1300 km. The white arrows indicate the horizontal component of the velocity field on a common scaling for all
three panels. The longest arrows in the panels from left to right correspond to 4.5, 8.8, and 25.2 km/s, respectively.

force can freely move in the horizontal direction, allow-
ing for flux concentrations to extend right to the bound-
aries. Although this condition is still quite stringent, es-
pecially at the top boundary, it allows the magnetic field
to freely expand with height through the photospheric
layers into the more or less homogeneous chromospheric
field, different from conventional simulations that extend
to a height of typically 600 km only.

2.1. Dynamic chromospheric magnetic field

Subsequent to superposition of the magnetic field, flux
expulsion from the granule centers takes place and within
less than 5 minutes, the magnetic field concentrates in
narrow sheets and small knots near the surface of optical
depth unity with field strengths up to approximately 1 kG.
Occasionally these magnetic flux concentrations extend
down to the bottom boundary at a depth of 1400 km but
more often, they disperse again at a depth of less than
1000 km leaving flux concentrations of a strength of a
few hundred Gauss only. Fig. 1 shows the logarithm of
the absolute magnetic flux density in three horizontal sec-
tions through the computational domain at a given time
instant.

The left panel refers to a depth of 1210 km, which is
close to the bottom boundary, the middle panel to a hight
of 60 km above the mean surface of optical depth unity,
where one can see the horizontal flows that expel the
field from the granule centers. The right panel refers to
a height of 1300 km, which is located in the chromo-
spheric layers, close to the upper boundary. There, the
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Figure 2. Emergent grey (Rosseland mean) intensity cor-
responding to the instant of Fig. 1.

magnetic field is marked by strong dynamics with a con-
tinuous reshuffling of magnetic flux on a time scale of
less than 1 min, much shorter than in the photospheric or
convection-zone layers. The field has a strength between
2 and 40 G in this snapshot, which is typical for the whole
time series. Different from the surface magnetic field, it
is more homogeneous and practically fills the entire space
so that the magnetic filling factor in the top layers is close
to unity. The formation of weak flux tubes prevails again
but on a spatial scale larger than the width of the sheets
near the surface. There seems to be no spatial correlation
between these chromospheric flux concentrations and the
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Figure 3. Snapshot of a vertical section showing the logarithm of the absolute field strength (color coded) and velocity
vectors projected on the vertical plane (white arrows). Theb/w dashed curve shows optical depth unity for vertical lines
of sight and the dot-dashed and solid black contours correspond toβ = 1 and 100, respectively.

small-scale field concentrations in the photosphere. The
former rather have a slight tendency to be located in be-
tween the flux concentrations at the surface.

Fig. 2 shows the emergent Rosseland mean intensity cor-
responding to the instant of Fig. 1. Several granules are
visible. Comparing the middle panel of Fig. 1 with Fig. 2,
one readily sees that the magnetic field is concentrated
in intergranular lanes and at lane vertices. However, the
field concentrations do not show a corresponding inten-
sity signal. This is because the magnetic flux is too weak
to form a significant “Wilson depression” (as can be seen
from Figs. 3 and 5) so that no radiative channeling effect
can take place.

Fig. 3 shows the logarithm of the absolute field strength
(color coded) trough a vertical section of the computa-
tional domain. Overplotted are white arrows indicating
the velocity field. The b/w dashed curve corresponds to
the optical depth unity for vertical lines of sight. Con-
tours of the ratio of thermal to magnetic pressure,β =
pgas/(B2/2µ) for β = 1 (dot-dashed) andβ = 100
(solid) are also shown. Highly dynamic transient fila-
ments of stronger than average magnetic field are a ubiq-
uitous phenomenon in the chromosphere and are also
present in the snapshot of Fig. 3 along the contour of
β = 1 nearx = 1000 km andx = 2700 km. They form
in the compression zone downstream and along propa-
gating shock fronts – the latter continue to be an integral
part of chromospheric dynamics as already known from
the non-magnetic case (Wedemeyer et al., 2004). These
magnetic filaments that have a field strength rarely ex-
ceeding 40 G, rapidly move with the shock fronts and
quickly form and dissolve with them.
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Figure 4. Two instances of shock induced magnetic field
compression. Absolute magnetic flux density (colors)
with velocity field (arrows),Mach = 1-contour (dashed)
andβ = 1-contour (white solid).

Fig. 4 shows close-ups of two instances of shock induced
magnetic field compression. The absolute magnetic field
strength (color coded) is shown together with the veloc-
ity field (white arrows), contours of Mach number unity
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Figure 5. Like Fig. 3 but with the white arrows representing vectors of the magnetic field projected on the vertical plane.

(dashed) and ofβ = 1 (white solid curve). In both cases
field has been swept to the region downstream the tran-
sition from supersonic to subsonic plasma flow. The sur-
face ofβ = 1 separates the region of highly dynamic
magnetic fields from the more slowly evolving field of
high beta plasma below it. According to Bogdan, Carls-
son & Hansteen et al. (2003), this layer acts as a mode
conversion zone, which indeed is observed in the present
simulation.

2.2. Small-scale canopy fields

Fig. 5 shows the same quantities as Fig. 3 does, but for
a different instant and with the exception that the white
arrows display the magnetic field projected on the corre-
sponding vertical plane. Like Fig. 3, it nicely exhibits the
formation of a “magnetic canopy field” that extends in a
more or less horizontal direction over expanding granules
and in between photospheric flux concentrations. Visible
is also the merging of two neighbouring canopy fields
of opposite direction nearx = 3000 km, where both
fields turn into a more vertical direction. The forma-
tion of such canopy fields—a very common phenomenon
in the present simulation run—proceeds by action of the
horizontally expanding flow above granule centers. This
can be seen in Fig. 3 (center), where the arrows indicate
the velocity field. Consequently, the canopy field con-
tinuously evolves with a time scale of granular life time.
The base of the canopy, which harbors weak field with
a beta plasma of around 100 is located in a height of
400 km. Note that a similar canopy could not form in
previous comparable two and three-dimensional simula-
tions, since they typically have the top boundary located
at 600 km, where the field is forced to become vertical.

The absolute magnetic field strength in the “voids” be-
low the canopy field is less than 3 G. This result is still
compatible with recent models from Hanle depolarization
measurements that predict the “turbulent field” to be or-
ganized at the spatial scale of the granulation with very
weak fields above the granules(Trujillo Bueno, Shchuk-
ina & Asensio Ramos, 2004). The latter result would be
compatible with the present simulation if referring to the
field above the canopy in the top photosphere and chro-
mosphere. Note that like Fig. 3, also Fig. 5 shows the
characteristic filaments in field strength in the chromo-
spheric layers close to the surface of equal thermal and
magnetic pressure,β = 1.

3. CONCLUSIONS

The hydrodynamic code CO5BOLD has been extended to
magnetohydrodynamics using a 2nd order accurate HLL
Riemann solver for computing the numerical fluxes and a
constrained transport for divergence free transport of the
magnetic field.

A first three-dimensional magnetohydrodynamic simula-
tion of the integral layers from the convection zone to
the chromosphere has been carried out. The simulation
is intended to represent magnetoconvection in a quiet
network-cell interior. It reveals a chromospheric mag-
netic field that is strongly dynamic. There, the mag-
netic field is continuously rearranged on a time scale of
less than 1 min. This is the expression of rapidly mov-
ing, transient magnetic filaments that form in the com-
pression zone downstream and along propagating shock
fronts. These filaments that have a field strength that
is stronger than the average but rarely exceeding 40 G,



move with the shock waves and quickly form and dis-
solve with them. The surface ofβ = 1 separates the
region of highly dynamic magnetic fields from the more
slowly evolving field of high beta plasma below it and
seems to act as a wave conversion zone. This surface is
located at approximately 1000 km but it is corrugated and
its height strongly varies in time.

The magnetic field gets almost completely expelled from
the photospheric layers of granule interiors, leading to a
horizontally directed but continuously changing “canopy
field” that overlays these “voids”. This result possi-
bly contradicts the ideal model of a space filling tur-
bulent weak field in the photosphere, customarily used
for the interpretation of Hanle depolarization measure-
ments. Over all, the picture of flux concentrations that
strongly expand through the photosphere into a more ho-
mogeneous, space filling chromospheric field (Solanki &
Steiner, 1990) remains valid.
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