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Abstract

New improved constraints on {2, the cosmological density of compact objects relative the critical
density, have been calculated using the gravitational microlensing effect. Compact objects with
masses between ~ 1073 and ~ 40 M will amplify the continuum emission of quasars without
changing the line emission and thus the emission line equivalent width is reduced. By comparing
models of the expected increase of small equivalent width objects with observations, {2¢ is con-
strained to be < 0.05 for compact objects in the mass range 0.01 — 1 M, for a source size equal or
less than 10'® m, Q¢ < 0.1 for compact objects with 0.01 — 2 M, Q¢ < 0.2 for compact objects
with 0.001 — 8 Mg and Q¢ < 0.3 for compact objects with 0.001 — 40 M. This has been done by
implementing the small equivalent width method (used by Dalcanton et al, 1994) in Matlab and
generalizing from an Einstein-de Sitter Universe to a A-dominated cosmology. This will increase
the optical depth for which a new expression is derived and calculated. Uncertainties in source
size and size of the broad line emission region have also been taken into account. This determines
new upper and lower mass limits of the compact objects.
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1 Introduction

The Universe is thought to be made up by dark matter and dark energy (only ~ 0.5% is visible),
but their nature and distribution is unknown. The dark matter could exist in the form of weakly
interacting massive particles or as compact astrophysical objects. How can we learn more about
dark matter and is it possible to detect? Yes, it can be done with gravitational lensing. This is
the result of the bending of light rays by gravitational fields and it is sensitive to both luminous
and dark matter alike.

If the lenses are very massive the deflection is strong and several images of the source can be
seen. This is called macrolensing, the multiple imaging of a source. If the lenses are small and
not strong enough to form two distinct images of a background source it may still magnify its
brightness to an observable extent. This is called microlensing and is one of the most promising
ways known to detect small compact objects.

These compact objects can be a part of a galaxy or they can be cosmologically distributed and
filling intergalactic space.

Since compact objects can lead to a magnification of distant sources and since sources and lenses
are moving, the magnification will change with time. The observed time scale for the lensing event
can be used to give the most probable lens mass. Searches for lensing events by compact objects in
the Galactic halo has been done by monitoring millions of stars in the Magellanic Clouds (EROS
and MACHO projects). Results of Alcock et al (2000) indicated that the most likely mass of
the compact objects (interpreted as a Galactic halo population) is between 0.15 and 0.9 M.
The greatest achievements of these projects though has been to rule out most forms of compact
dark matter as the dominant contributors to the dark halo. Results from Afonso et al (2003)
yields strong limits. Less than 25% of a typical halo model can be composed of objects with a
mass between 2 - 10”7 — 1M, at the 95 % confidence level. But, it is possible that the observed
microlensing events comes entirely from an undetected foreground or background population in
the outer galaxy or in the Magellanic Clouds. Since very few microlensing events have been
detected (and some of them probably are due to self-lensing) the results so far point to the fact
that the observed microlensing events are caused by stars within the Magellanic Clouds, and that
the contribution of compact objects to dark matter in our halo is 0-5 % (Kailash C Sahn, 2003).

The MACHO and EROS projects are based on the assumptions that the compact objects are
uniformly distributed and bound to the galactic halo. Clustering effects of the compact objects
are also neglected. Constraints on the cosmological density of the compact objects cannot be
obtained, only in fractions of the dark matter of the Galactic halo. Furthermore, the searches
for gravitational microlensing of stars in the Magellanic Clouds are sensitive only to strong grav-
itational lenses, that is compact objects with high column densities (> 10%g cm~2). They would
not detect cold gas clouds with 102g cm =2, so the limits inferred from the MACHO and EROS
projects do not apply to them (Walker and Wardle, 1999).

If the compact objects are cosmologically distributed and not bound to galaxies, investigation of
the equivalent width distribution of quasar emission lines can set upper limits on the cosmological
density of compact objects (Canizares, 1982; Dalcanton et al, 1994). This method is based upon
the fact that compact objects (in a wide mass range) can magnify the brightness of the small
continuum emitting region (CR) in quasars, while the broad line emitting region (BLR) will be
little affected due to its larger radius. The continuum is thus magnified by the microlensing event,
but the magnification of the line emission is unaltered. This will make the equivalent width of
the emission lines from the BLR much smaller. The higher the density of compact objects and
the larger the redshift to the quasar, the more apparent will this effect be. If a flux-limited
sample of quasars at low redshift is compared to a sample at high redshift, then the latter should
have a higher fraction of small equivalent widths objects. By comparing models of the equivalent
width distribution with observations the cosmological density of compact objects can therefore be
constrained. At these large distances even the diffuse gas clouds would appear compact, because
their size would be smaller than their Einstein-radius (see section 2.1).

Dalcanton et al (1994, hereafter D94) investigated this and since the expected increase of
small equivalent width quasars was not found they concluded that Q¢, the cosmological density of



compact objects relative to the critical density (see section 2.1), must be < 0.1 in the mass range
0.01 — 20M¢, for Qyiorar < 0.6 (see section 2.1), Q¢ < 0.2 for compact objects with 0.001 — 60Mg
and Q¢ < 1 for compact objects with 0.001 — 300M, irrespective of Qotq;-

The article of D94 is often referred to when ruling out any significant cosmological density of
compact objects. Carr (2000) refers to their limits of Q¢ and so do Wambsganss (2002), Coles &
Lucchin (2002) among others. Since the method and their constraints on Q¢ are one of the most
powerful today it is important to revisit this with new data available today, which is the purpose
of this work.

The issues in D94 that needs to be reexamined is the cosmology and the effects of new BLR
and CR sizes. The cosmology used by D94 is a flat Einstein-de Sitter universe (section 2.1).
Generalizing this to a Lambda-dominated universe increases the probability of lensing compared
to an Einstein-de-Sitter universe.

For simplicity D94 assumed that the total density of all matter is equal to Q¢ and only
estimated the constraints when Q¢ # Qp. This point needs further investigation.

Recent research indicate that the BLR could be substantially smaller than expected in the
standard model used by D94 and this affects the upper limits of the lens masses that this test can
constrain.

The CR size affects the lower mass-limits of the compact objects. In D94 a standard size of
the CR was assumed, but since the geometry and size of the CR is highly uncertain the impact of
different sizes is examined.

The luminosity function used by D94 is from Boyle et al (1990) and needs to be substituted.
This will affect the amplification bias.

These issues are examined by implementing the D94 method in matlab. A code listing is given
in Appendix A.

In section 2 basic cosmology, lensing theory and the theory of statistical microlensing for a point
source are developed. Then the effects of a finite source size, the BLR size and the amplification
bias are taken into account and finally the predicted distribution of equivalent widths of quasar
emission lines is calculated. Section 3 describes the general considerations when choosing a quasar
sample and the sample used here. In section 4 the predicted distribution is compared to the
observations and in section 5 the results are presented. Section 6 contains a discussion of possible
uncertainties, comparison of the results of D94 and the future of microlensing in this field. A
summary is given in section 7.



2 Theory of magnification distributions

2.1 Basic cosmology

It was Edwin Hubble in 1929 that proved that the Universe is expanding. The Hubble parameter
H(t) measures the expansion rate of the Universe.

There are three different possible geometries for the Universe: closed, flat and open. The
critical density of matter (corresponding to a flat Universe) distinguishes between the closed and
open cases and is defined as:

3H(t)
P 1
Pcritical 81G ( )

where H(t) is the Hubble parameter and G is the gravitational constant.
The average density of matter relative the critical density is defined as a dimensionless matter
density parameter:

Q= LM 2)

Pecritical

and the dimensionless compact objects parameter similarly as:

Q¢ = Pc (3)

Peritical '
A flat matter-dominated Universe is called an Einstein-de Sitter Universe and the total dimen-
sionless matter density in this Universe is:

Qiotar = QM = 2q0 (4)

where qq is a deceleration parameter (measures the rate by which the Universe is slowing down).

Recent results from WMAP (Spergel, 2003) shows that Q:oter = 1.021+0.02 and Qpr = 0.27fg:8§.
Approximately 73% of the energy content in the Universe is assumed to consist of vacuum energy
(or dark energy). It is defined as:

2
Q= PV :)\/87ch

Peritical Peritical

(5)

Here ) is a cosmological constant (introduced by Einstein) and corresponds to a tiny but universal
force acting on matter. This constant was assumed to be zero only a few years ago. A Universe
with a non-zero cosmological constant is called a A-dominated Universe if Qp > Q.

In this Universe Q4ota1 = Qnr + Qa. Qar and Q¢ can consist of ordinary baryonic dark matter
or non-baryonic dark matter.

The nature of the compact objects are not known but there are many suggestions. Among
those are: primordial black holes, white dwarfs, brown dwarfs, neutron stars, stellar black holes
and cold H; gas clouds.

Whenever applying a A-dominated cosmology Q4 = 0.70, Qs = 0.30 and the WMAP value of
Hy =71 kms~*Mpc~ (Spergel, 2003) will be used.

2.2 Lensing theory

Any mass distribution located between the source and the observer will lead to an magnification of
the luminosity. Since the deflection angle is proportional to the lens mass one of the applications
of gravitational lensing is the determination of the mass of the deflector.
If a light ray passes close to a point mass within a distance Iy (the impact parameter, see fig. 1
and section 2.3), then it feels an acceleration component perpendicular to its direction of motion.
The resulting deflection angle « is then (as predicted by general relativity):

4G Mg
a =

(6)
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provided that a is small. Here Mg represents the lens mass of a compact object, G is the
gravitational constant and c is the speed of light.

The simplest situation in which a mass can be determined is that of a spherical deflector with
a source right behind the centre of the lens and a ring shaped image (the Einstein ring) will be
seen. This is shown in fig. 1.
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Figure 1: The geometry of a lensing event.

The subscrips LS, L and S refers to distances from the lens to the source, from the observer
to the lens and from the observer to the source respectively.

The relevant length scale for microlensing is the Einstein radius in the source plane and is
defined (Schneider et al, 1991) as:

4GMc DsDis L [Mc
Rp = ~ 4102, S
E 2 Dy M, ™ (™

where the typical redshift of a typical lens is at z;, ~ 0.5 and with a source at redshift z;pyrce & 2
(Wambsganss, 2000). D is the angular diameter distance.
This length scale translates into an angular scale of the Einstein angular radius (fig. 1):

Re . ¢ |[Mc
= — = ]_ -_— .
0g Ds 0 Mo arcsec (8)

Small lens objects are not detectable by multiple imaging as the image separation lies in the
range 19 -107% — 10_6\/( MM@) arcsec if the source is a distant quasar. For microlensing in the
Milky Way the Einstein angle is of the order of milliarcsec (Wambsganss, 2000). This gives only
a magnification of the luminosity and no observable splitting of the source image.

For an object to be compact it has to have a size of its Einstein radius or smaller.

Due to the relative motion of the lens, observer and source, the total magnification will change
with time. The duration of the brightening depends on the mass and velocity of the lens, and the
geometry of the event.

2.3 Magnification probability for point sources

This section describes the theory of statistical lensing for a point source with an lensing model
developed by Canizares (1982) (built upon Press & Gunn, 1973 and Weinberg, 1976) and used by
D94. It will give an approximate but analytically simple form for the probability of lensing. The
effect of a finite source size is taken into account in section 2.6.



The lenses are assumed to be distributed uniformly, with constant comoving density (and each
one can act as a gravitational lens). The probability distribution depends on the lens population
in the universe, as well as on the redshift and source size.

If the universe is considered to be isotropic and homogeneous (the cosmological principle)
the Robertson-Walker metric can be used to derive a relation of cosmological distance measure
to redshift from the field-equations of general relativity. But the universe is not homogeneous
on scales smaller than galaxy clusters. The inhomogeneities will affect the measured distances
through gravitational lensing and it is not possible to obtain exact solutions for this model. Instead
simple methods can be used to compute approximate distances such as the Dyer & Roeder (1972)
distance-redshift relation in a universe in which all matter is concentrated into objects such as
galaxies. If a beam of light propagates far away from these objects it is approximately as if the
beam propagates along a small empty tube in an otherwise homogeneous universe. The effects of
gravitational lensing by the clumps of matter is handled by putting point masses back into the
cone and analyze the scattering events.

The effects of clumping of lenses is neglected because correlations between them are not im-
portant. Correlations are only important for clumps that contain a sizable fraction of the matter
along a given line of sight. But such dense clumps are not expected, not even in the most extreme
models of large-scale structure (D94).

The Dyer & Roeder (1972) empty cone distance:

D(z) = -A(2) (9)

where A(z) is the affine parameter (Dyer & Roeder, 1972):

A(z) = /Oz(l + )31+ 2q02') V2 d2 . (10)

In this expression the cosmological constant is assumed to be zero. The optical depth is defined
to be the mean number of lenses that fall within the impact parameter ly. Objects whose lines of
sight pass within [y of the lens will be magnified by a factor greater than py which is chosen to
be 1.061 (the magnification when the bending angle equals the critical angel ap = 2 - 0g). The
magnification g = Lobs/Lintrinsic is always larger than 1.

The impact parameter ly (fig. 1) can be expressed as:

(s 2) = 16]\5;?(1 + z')’;((i )) A(z) = A()].- (1)

The probability p, (., 2’5 2) du, dz' that an object at redshift z obtaining a magnification from p,,
t0 fy + dp,, from a single lens within redshift 2’ + dz’ factors into two independent probabilities

pz(2'52) dz' and p1(py) dpy:

Pu(pus 25 2) dpy d2' = p(2'; 2) p1(pa) dppu d2' . (12)
p-(Z';2) denotes the probability of finding a lens at 2’ within ly, and p;(p.,,) is the probability of
one lens producing a magnification.

(1+2)? M(#)

z I; = — ! ! s 1
p2(2'52) dz TToq A@) A(2) = A(2")] dz (13)
1 2 _ 1\-3/2 .
— ) 32015 (bm — 1) dify ¢ H = o,
Pa(po) At { 0 P < Mo (14)

The subscript u is used to denote that the probability of magnification is uncorrected for flux
conservation (see section 2.4). p,(2';2) can be integrated to find the optical depth for a source at
redshift z:

No(z) = /0 Cpu(2) 2 (15)



If the optical depth N (2z) > 1 contributions from two or more lenses, pa(u.,, ), must be considered.
It is found by convolving two single lens probabilities with the assumption that one lens is weak
and that the net amplification equals the product of two individual magnifications:

_ [ 25250 dpn 2 pa >0,
ps2m) i = { b > 14
In addition if no point masses are near the line of sight within [y through an inhomogeneous
universe, the quasar light is dimmed relative to that in a homogeneous universe and po(,,) must
be added. This is the empty cone case:

(16)

Po(Hu; 2) dpu = 6(pu — 1) (17)

where 6(u, — 1) is a delta function centered at p, = 1.

For magnifications less than pg and u? respectively p;(u.) and ps(u,) are defined to be zero.
(The minimum magnification of pa(p,,) is the product of the minimum magnification of two lenses.)

The optical depth is used to calculate the Poisson probabilities of having 0, 1 or > 2 lenses
along the line of sight. Py =e V¢, P, = Nge Ve, P, =1— Py — P,.

p1(i) and pa(u,) are both normalized to unity. po(u;2) is already by the definition of a
delta function normalized to unity.

/ p1(p) dp, = 1, /2 P2(pu) dpt, = 1. (18)
M Ho

0

The probability of lensing can now be approximated as:

Pulpu; 2) = Po(2)po(pu) + P1(2)p1(pu) + P2(2)p32(ku)- (19)

These three terms corresponds to having none, one and two or more lenses within [j.

2.4 Flux conservation

Light bending must not violate the law of flux conservation. If the total flux of energy through any
surface surrounding a given object is considered, it is obviously independent of whether the matter
inside that surface is distributed smoothly or in clumps. The mean flux density is therefore that
expected in a homogeneous universe in which the lens material is spread out uniformly (Peacock,
1982; Canizares, 1982; D94). The magnification considered is thus the magnification relative to
the case where the lens mass were absent. Lens masses lying outside the cone described by ly(2'; 2)
will defocus the light in the cone and cause a diminution of the image (D94; Canizares, 1982).
The demagnifications are necessary to balance the magnifications from strong lensing events so
that (20) is satisfied.

To compensate for this p, (14 2) is scaled to smaller magnifications p by a constant diminution
factor p,, such that g = p,u,, and is chosen to satisfy the constraint of flux conservation (D94;
Canizares, 1982):

<p>= / pp(p; z)dp = 1. (20)
0

This implies p, = # where

©w

< Yoy >= / Mupu(ﬂu;z)dﬂu- (21)
0

With this correction the final expression for p(p; z) then becomes (D94; Canizares, 1982):

(13 2) =< pu > [Po(2)po(pte) + P1(2)p1(ttu) + Px2(2)pz2(pn)]- (22)

This is an approximation and a conservative way of determining {2 because it tends to underesti-
mate the true amount of lensing (D94). Note that the expression for p(u; z) contains no dependence



on the mass of the lensing compact objects. All the information about Q¢ is contained in the
Poisson probabilities (which is calculated from the optical depth).

2.5 A new optical depth with non-zero cosmological constant

Generalizing from a Einstein-de Sitter Universe to a A-dominated Universe will affect the optical
depth through an increased path length. Another expression for the affine parameter (10) with a
non-zero cosmological constant is needed.

The affine parameter-redshift differential equation is (Seitz, Schneider, Ehlers, 1994):

dz 1 4 R(t)

d\ ¢ R(t)

where R(t) is the scale factor.
This equation can be solved and gives (Schneider, 1997):

[+ 2N = [+ 2] (23)

1 ZR(®)
¢ R(to)

z . dZ/
A=) = /0 Hy (1+2)3/1+2Qu — Qa1 - (1 +2)72)

With Q¢ = Qpr and Q4 = 0 this expression is equal to (10).

The microlensing optical depth is just the lenses in a ”tube” from the observer to the source.
It is independent of the velocities of the lenses and sources and independent of the lens masses.
The only dependence is on the lens density distribution. Assume that the lenses are conserved,
i.e. the number density of lenses is ng = ng c(1 + 2)3, where ng ¢ is the present value of nc and
that all compact objects have the same mass. It is related to the cosmological parameters by:

. (24)

3H?
=Qc—2 . 25
no,c c 871G Mg (25)
The differential number of lenses along the line of sight is:
dNg = ncdV =ny o(1+2')3dV . (26)

A circular cross-section is considered which radius is the Einstein radius. The volume element is
A - dDyyoper where the area is (with /g from equation (11)):

o TI6McG AA(Z) ,
A=nl®= CTOC(l +2) ) A(z) — A(2)] . (27)

Differentiate equation (9) to get the differential distance and use the relationship dDproper =
(1+2")dA (Seitz, Schneider & Ehlers, 1994). This will give a new expression for the optical depth
along the line of sight with a non-zero cosmological constant:

N¢ :/ dN¢
0

N 6QC~/0 \/1 +2'Qp — (1 —(1+2")72) A(2)

(A(2) = A1

With Q4 = 0 and Qpr = Q¢ this expression is equal to (15).

Fig. 2 shows the optical depth as a function of redshift. In this figure different values of Q¢ is
plotted, as well as with different cosmologies.

In a Qj-dominated universe the increased path length increases the optical depth. Compare
Q¢ = 0.2 and Q¢ = 0.1 for the different cosmologies in fig.2. This will increase the probability of
lensing and decrease the resulting Monte Carlo probabilities (i.e. stronger constraints can be set).
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Figure 2: The optical depth as a function of redshift.

2.6 Finite source size

It is believed that the central regions driving the activity of quasars and active galatic nuclei
(AGNs) is an accretion disc surrounding a supermassive black hole. As gases fall onto the black
hole, their gravitational energy is converted into radiation. In the standard model the size of the
UV-optical continuum CR is at least a few times the gravitational radius (Collin et al 2001), which
for a 1039 M, black hole is 1.5 - 101172 m. Since the expected angular size of accretion discs
is too small to be resolved spatially, quasar microlensing can be used to obtain information of
the central regions. The strongest hint for very small source sizes comes from variability, but the
geometry of the CR is complicated and mainly unknown.

If most quasars do have large CRs then no constraints can be placed on the small lens masses
because for these even the compact CR will behave like an extended source. How large is the CR
allowed to be then before it will appear extended and what size of the CR should be used in this
test?

By following the detection of a gravitational microlensing event in Q2237+0305A, Wyithe et
al (2000) determined the CR size and found that the most likely size is 2 - 102 m. Upper and
lower limits of the R-band continuum is 6 - 10'®* m and 2 - 10! m respectively (99% confidence
level). They also considered the joint probability for source size and mean lens mass and found
that the mean lens mass lies between ~ 0.01 and ~ 1 Mg (95% confidence). (These results are
depending on an estimated event duration of 52 days for the high magnification event.)

For the same quasar Shalyapin et al (2002) derived new information of the size. They inferred
that 90% of the V-band and R-band luminosities are emitted from a region with radial size less
than 3.7 - 10'* m (2 o confidence level). For a uniform disc Ry = 1.9 - 10'* m (at 1o confidence).

For the Double Quasar QSO 0957+561 A,B, Refsdal et al (2000) found an upper limit of 6-10*3
m at a significance level of 10 %.

The most commonly used CR size is 10'3 m (in D94 the CR size is assumed to be 0.0003 pc ~
9.3-10'2 m). Because of the uncertainty of source size, the sizes considered here is 10!2 — 1014 m.

If the source cannot be considered as a point source, there is a maximum possible magnification
Lmaz (D94):



MKmaz =

lproj 2
1+ | -2 (29)
lSO’U/f'CC
where lgmj is Iy from the lens plane to the source plane. In the statistical lensing approach this is
substituted with < I§"®’ >,,, which is the average of I§"*’ over 2/, weighted by p.(2'; z) (D94):

< lProj > = fOz lO(zl;z) pz(zl;z)dz" (30)
0 = foz p.(2';2)d2’

With the new expression for p,(2';z) this gives:

oi 2400 [McG [ (1+2)5/2 AN ) AV
<l ™ >s= N¢(z) V cHp /0 V1+2'Qu — Qa1 — (1+2')72] <)\(z)) ) = AT -

(31)
(Note misprint in D94 equation without 24.)
The maximum magnification possible then becomes (D94):
9°(2)Mc
Hmaz = 1+ l27 (32)

source

where g(z) =< lf)’mj >, /M'/2. This function is little dependent of z;ource Or Q¢ and is not
affected much by introducing a new cosmology. This is because in equation (31) the fraction
Q¢ /N¢(z) remains constant (=~ 0.41) when Q¢ is varied. g¢(z) varies a little around 0.43 and
depends only weakly on Hy (an inverse correlation exists between fi,,,, and Hy). The dependence
of pimaz Of the lens mass M and the source size [, is shown in figure 2.
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Figure 3: Maximum magnification as a function of lens mass for different source sizes: I, = 102 m
(dashed), I, = 3-10'2 m (thin solid), I, = 10'® m (thick solid), I, = 3 - 10'®* m (dotted), I, = 10'*
m (dash-dotted); z=2, Qp = Q¢ = 0.3, Qp = 0.7 for all ;.

If the lens mass is small and the source size is larger than or equal to < lg’"”' >, so that

mac ~,

W®® = 1, equation (22) is no longer correct. The total intensity of the source must be averaged

10



over many lines of sight from the influence of several compact objects at different redshift. Since
this is not trivial, p(y; z) is constrained by flux conservation (20) and normalization:

/Ooop(u; z)dp=1. (33)

With these two constraints Canizares (1982) and D94 solves the problem by approximating the
rapid roll-off in the probability distributions p;(i.) and p>2(p.) by cutting them off att p,, =
Wmaz- A delta function is added at the cutoff which preserves the normalization. Here this is
done for p;(py), but not for pa(u,). If the minimum magnification is p2 (the product of the
minimum magnification of two lenses) then the maximum magnification should be the product
of the maximum magnification of two lenses! (Is this another misprint in D947) Here the delta
function that preserves the normalization for pa(u) is added at p, = p2,,,-

P1(pu)dpty = BO(pu — p " )dptn [T i (34)
P2 () g = C8 (o — (17**)?) At phu = (ui®®)? (35)

B and C is computed by normalizing p; (1) and pa(p.) to unity.

This is a simple way of taking a finite source size in account. (Schneider et al, 1992 found
another perhaps more correct approximation of a finite source size.)

For a given source size a specific 4, thus corresponds to a certain lens mass. If the source size
is varied a constant p,,., corresponds to different lens masses and can be calculated if equation
(32) is solved for the lens mass and g(z) is known from equation (31).

In table 1 corresponding pmq. and lens masses are listed for different source sizes. This is
approximate values (with z=2.0 and h = 0.71), since they differ slightly with redshift and source
size. In the resulting table with Monte Carlo results (section 5.3) fmq. corresponding to lens
masses have been calculated for different source sizes.

Table 1: Approximate values of pinq, corresponding to different lens masses for different source
sizes.

ls = 102m ls=3- 10?m ly = 10"3m ls=3- 103 m ls = 10" m
pm | Mc [Me] | Mc [Mg)] Mc [Mg] | Mc [Mg] Mc Mg
1.2 106 10°° 104 103 102
2.2 10~° 104 103 102 10~ 1T
6.2 104 103 102 101 1
19.3 1073 102 1071 1 10
61 102 101 1 10 100
193 0.1 1 10 100 1000

2.7 Amplification bias

An object not intrinsically bright enough to be included in a flux-limited sample can still be
detected if it is magnified sufficiently by lensing. The fraction of lensed objects in the sample will
then be greater than otherwise expected. This effect is called amplification bias and may have an
influence on source counts and the luminosity function.

The effect of the amplification bias depends very strongly on the form and slope of the quasar
luminosity function. If the luminosity function is steep, there are many more faint sources available
to be lensed into the sample than there are for a shallow power law (D94; Canizares, 1982). One of
the indications for the importance of amplification bias is the apparent number excess of galaxies
around high-redshift QSOs found by several groups (D94).
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There are different opinions on the importance of amplification bias. One is that practically
all bright quasars are highly magnified if Q¢ is large enough, the lens mass is larger then 0.01M
and the CR is small. (Schneider, 1992; Bartlemann and Schneider, 1990). Others considers this
view simplistic and suggest that amplification bias is not so strong (Wyithe and Turner, 2002).
Here D94 and Canizares (1982) are followed.

The observed numbers of sources in the luminosity interval (L, L+dL) is (Canizares, 1982;
Schneider,1987):

(D) 0o [ Lpn () ar (36)

where n is the number density of quasars . The flux conservation and normalization of p(y;z)
imply that the index of a power-law luminosity function is unchanged by lensing (Canizares, 1982).
With a power law n = noL ™ this gives (Canizares, 1982; Schneider, 1987):

o0
nawsdL o [ plu) ududL. (37)
1

Here a broken power-law form for the luminosity function is assumed. For the slope of the steep
and shallow power laws, a and 3 are used. R is the ratio of the flux limit of the sample to the flux
at the break in the luminosity function. (Calculation of R in section 2.8.) The corrected p(y; z)
becomes (D94):

w2) [ (&) i p<R
ps(u;Z)Zpl;V *{ ig[(%)ﬂl—l]+l : Z;R (38)

where N is a normalization factor. This correction of p(u;2) assumes R > 1. If R < 1 only the
second case of (38) applies.

The amplification bias is strongly dependent on R and a. If R < 1 then only quasars from
the shallow end of the luminosity function will be available to be lensed into the sample and the
amplification bias will be much weaker than if R > 1.

For moderate magnifications p,(u; 2z) oc u~4~®) which decreases more slowly than p(u;z) o
u=3 (a > 1). With o = 3.41 from Boyle et al (2000), p(u; 2) o< p~95%. For larger magnifications
(1 > R) the effect is not so strong (the amplification bias is then dependent on 3). With 8 = 1.41
from Boyle et al (2000) p(u;2) o< u=259.

This is the final corrected expression for the probability that an object at redshift z obtaining a
magnification y. The probability for lensing from (19) has now been corrected for flux conservation,
a finite source size and the effect of amplification bias.

2.8 Calculation of the strength of the amplification bias

With « given from the luminosity function it is R that can change the strength of the amplification
bias.
R is calculated using;:

R — Ltimitsample _ | 00.41M" (2)~ Mp, sampie(2)] (39)
L*(2)
where L*(z) (M*(z)) is the luminosity (absolute magnitude) at the break of the luminosity func-
tion.
To obtain < R > edian; < 2 >median 1S used.
To obtain a strong amplification bias a sample where the luminosity is brighter than the break
luminosity at the medium redshift of the subsample is needed.

If the apparent magnitude is known then the absolute magnitudes can be calculated with
(Kayser et al, 1997):
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Dy [pc]
M = m — 5log ( 10[pc] ) K (40)
where K is the correction term defined as K = 2.5(a — 1)log(1 + 2), @ = 0.5, and Dy, is the
luminosity distance in pc. This term takes into account the fact that the observed wavelength
interval is redshifted compared to the corresponding interval of emission. Less radiation is observed
because the bandwidth at the observer is (1 + z) times larger than the source, if the spectrum is
flat. If it’s not, additional corrections must be included based on the shape of the spectrum. A
power-law continuum for the quasars is assumed with slope a = 0.5.

The new luminosity function has been taken from Boyle et al (2000). The break of the magni-
tude in this luminosity function is best described by a second-order polynomial function (and not
as previously with a power-law evolutionary model):

M3 (2) = M35 (0) — 2.5(k1 2z + kqo2?) (41)

where k; = 1.36, k2 = —0.27 and M%(0) = —22.65 are adopted from Boyle et al (2000) assuming
Qup = 0.3 and Qp = 0.7. The slope of the luminosity function has also changed from a = 3.97
and 8 = 1.41 (Boyle, 1990) to o = 3.41 and 8 = 1.58 (Boyle, 2000).

The effect of the new function for the break magnitude of the luminosity function, a weaker
strength of the amplification bias and a less steep slope of the luminosity function is a weaker bias
than that assumed in D94. If the sample used by D94 is also used here, the resulting Monte Carlo
probabilities will decrease (i.e. weaker constraints on Q¢ can be set). If a brighter sample is used
where the limiting magnitude is several magnitudes brighter than the luminosity function break,
then the constraints on ¢ would be stronger.

2.9 Mass range of compact objects
2.9.1 TUpper mass limits of compact objects

If the mass of the compact objects is high enough to magnify not only the CR but also the BLR,
then the small equivalent width method cannot be used. Recent research indicate that the BLR
could be substantially smaller than expected in the standard model, which assumed the BLR to
have radius in the 0.1 - 1 pc range (=~ 3 - 10'°~16 m; Wandel et al, 1999; Collin et al, 2001). If
the BLR is smaller, this will decrease the upper mass limits of the compact objects that can be
constrained.

The most commonly accepted model of the BLR consists of an assembly of photoionized clouds
(Collin et al, 2001). A major tool for examine the structure of the BLR is reverberation mapping,
through the study of correlated variations of the lines and continuum fluxes. For low-luminosity
AGNs (mainly Seyfert galaxies) Wandel et al (1999) inferred a size in the range of a few lt-days
to a few lt-weeks (= 10'3 — 9 - 10'* m). For 17 Palomar-Green QSOs Kaspi et al (2000) derived
sizes from the Balmer lines in the range from 39 to 319 lt-days (10'5 — 10'® m). They also found
a global scaling of the BLR size as a function of the 5100 A luminosity, rgrr oc LO-7£0:03,

The scatter in BLR sizes can be attributed to the different size/structure of the BLR in different
objects and different sizes of the regions associated with emission lines of different degrees of
ionization.

The question is if there exist lensed quasars with BLR radius smaller than the projected
Einstein radius of the microlens on the source? Abajas et al (2002) investigated this (using a flat
cosmology, Q3 = 0.3, h = 0.7 and the Kaspi relationship rgrr oc L07*0-93) Their conclusion
were that the high-luminosity quasars should have no strong microlensing in the emission lines of
BLR, if the lenses are star-sized objects. But for a z=2 quasar with my = 22.5 microlensing on
the BLR would be quite pronounced. Since the sample from Steidel & Sargent (1991, see section
3.2.1) used in this investigation (and by D94) is bright it should not be a problem with lensed
BLR if the lens mass is not higher than a star-sized object. But how high then are the lens masses
allowed to be before the BLR will be lensed?
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The test used to constrain Q¢ (described in section 4) compares the fraction of very small
equivalent widths in a sample of quasars, W) < Wiimit, to the fraction predicted by the model.
The small equivalent widths have been magnified by a factor p > pimiz (typically pyimic =~ 2). If
the magnification of the BLR is neglected then the fraction of small equivalent width objects will
be proportional to (D94):

f«/oo ps(p; 2)dp . (42)

limit
If the line is magnified by a factor of uprr the number of objects in the small equivalent region
will be reduced by a factor of Af/f:

HKlimit"UBLR

Af _ Jurim ps(p; 2) dp

3 (43)
f f#timit ps(lﬂ Z)d/i
Approximating ps(u; 2) o< u~2 (includes some correction for amplification bias) gives (D94):
A -1
_f _ <MBLR ) ' (44)
f UBLR

With this approximation f;m;: cancels out.

The more lenses along the line of sight the larger the fraction of small equivalent widths. So
if Q¢ is large, Af/f can be larger and still leave a detectable signal. Therefore the upper end of
the mass range over which the equivalent width test is effective increases with Q¢.

Here Af/f is allowed to be < 0.15, 0.25, 0.50, 0.75 for Q¢ = 0.05, 0.10, 0.20 and 0.30 respec-
tively. The corresponding upper limits on lens masses are 1, 2, 8 and 40 M, if the BLR size is
10% m. (See section 5.3 for further discussion.)

2.9.2 Lower mass limits for compact objects

The lowest lens mass (corresponding to a certain fi,q,) that this test can be used to constrain
depends on the source size (see section 2.6), €., the redshift of the sample (through the optical
depth) and the number of objects in the high-redshift sample. If the total number of objects is
high then the resulting Monte Carlo probabilities will be low if the observed distributions are
statistically identical.

If the lens mass is very small then the maximum magnification of the continuum fiy,4, is too
small to take the object into the small equivalent region. Then this test cannot be used. D94 have
a cutoff for lens masses less than 0.001 — 0.01Mg. But this is calculated with the assumption of a
source size of ~ 9.3 - 10'2 m. If the source size is smaller then the minimum mass for lenses that
this test can constrain is lowered, if it is larger the minimum lens mass increases (see table 1 and
section 5.4 for further discussion).

2.10 Emission line equivalent width distribution

The definition of equivalent width of an emission line g is:

Wy = / IVA(i';)d)\. (45)

If the CR of a quasar is magnified by a compact object with a factor y and the BLR is not, then
the observed intensity of the continuum is increased to pI, (Ao) while the intensity of the line AT,
is effectively unchanged. I,,(\o) is the intensity of the continuum under the line.

The observed equivalent width for a lensed object will then be smaller than for an unlensed
object (D94):

Wa=-1 (46)
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Here Wy represents the equivalent width that would be measured if the quasar were not lensed.
If po(Wo) is the intrinsic distribution of equivalent widths and with p,(u;2) from (38), then
the apparent distribution py (W)) is (D94):

pw(Wh) = / " a1 2) Po(u W) du (a7)

The unlensed distribution can be represented as a log normal function (the distribution of W
if InW is Gaussian distributed; D94).

L ooty W )
\/2my2 Wo

(Note three misprints in D94 in this equation.)

The resulting probability distribution of equivalent widths is shown in fig. 4-9 and shows how
the distribution changes with redshift, Q¢ and maximum magnification p,,q,. In fig. 4 and 5 the
distributions of equivalent widths with Q¢ = 0.3 and pne. = 20 is shown for a series of redshift.
Note the rapid buildup of a tail at small equivalent widths. The small decrease of large equivalent
widths are due to the diminution of the apparent brightness (see section 2.4). Fig. 6 and 7 shows
the distribution of equivalent widths with z=2 and p,,q,; = 20 for different Q.

Note that fig. 4 and 6, fig. 5 and 7 almost have identical distributions. Approximately the
same distribution is obtained for Q¢ = 0.05, z=2 and Q¢ = 0.3, z=0.5. Similarly Q¢ = 0.1, z=2
are almost identical to Q¢ = 0.3, z=1 and Q¢ = 0.2, z=2 with Q¢ = 0.3, z=1.5. If a high-redshift
sample is used strong constraints on small {2¢ can be obtained.

In fig. 8 and 9 the distribution of equivalent widths with z=2 and Q¢ = 0.2 is shown for
different pmer = 2.2, 6.2 and 19.3. If g, 2 7 then the maximum magnification of the CR is
large enough that the resulting equivalent width distribution is almost completely independent of
M. The reason for this is that ps(u;2) in (47) decreases very rapidly towards zero for high u.

po(Wo) dWy =
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Differential distribution of equivalent widths for different redshifts
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Figure 4: Differential distribution of equivalent widths for different redshift: z=0 (thick solid),

z=0.5 (thin solid), z=1 (dashed), z=1.5 (dotted), z=2 (dash-dotted). Q¢ = Qar = 0.3, O = 0.7,
a =341, 3 =158 R=1.6, vy =0.3, w = 2.85 and pyqee = 20 for all z.
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Figure 5: Cumulative probability distribution of equivalent widths for distributions with different
z (parameters as in figure 4).
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Differential distribution of equivalent widths for differemf)C
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Figure 6: Differential distribution of equivalent widths for different 2¢ with redshift z=2 and
Umaz = 20: unlensed distribution (thick solid), Q. = 0.05 (thin solid), Q¢ = 0.1 (dashed),
Q¢ = 0.2 (dotted), Q¢ = 0.3 (dash-dotted). R=1.6, v = 0.3, w = 2.85, and o = 3.41, B = 1.58,
Qa = 0.7 and Qpr = 0.3 for all Q¢.
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Figure 7: Cumulative distribution of equivalent widths for distributions with different Q¢ (pa-
rameters as i fig. 6).
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Differential distribution of equivalent widths with different Hinax
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Figure 8: Differential distribution of equivalent widths for different 4, with redshift z=2 and
Q¢ = 0.3: unlensed distribution (thick solid), fmez = 2.2 (dashed), pmaz = 6.2 (thin solid) and
Umaz = 19.3 (dash-dotted). Qpr = 0.3, Qp = 0.7, o = 3.41, B = 1.58, R=1.6, vy = 0.3, w = 2.85
for all pmqz-
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Figure 9: Cumulative distribution of equivalent widths for distributions with different g, (pa-
rameters as in fig. 8).
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3

3.1

Observations

Considerations in choice of sample and emission lines

When choosing a sample to which the equivalent width test can be applied there are important
aspects to consider.

3.2

The time scales of the microlensing events

The time lag between the selection of the quasars in the sample and the time when they
were observed spectroscopically is important. If this is too long then the microlensing event
that may have caused a quasar to be lensed into the sample will have ended. The equivalent
widths of the quasar emission lines will have become uncorrelated with the presence of the
quasar in the sample, and the amplification bias will be removed.

If the compact objects is distributed randomly a typical time scale for a y = 3 microlensing
event to fade to a u = 1.7 event to motion of the lens (D94):

100kms=1\ [ M \"/?
Atmicrolens ~ 82 <,U77n;s) <M—®) yr (49)
re

where v, is the velocity of the lens relative to the line of sight from earth to the quasar.
With a high velocity the time scale will be short. With v,o; = 500 kms~! and a lens mass of
0.001 M, the time scale is approximately 0.5 yr. With M = 0.01 M and v,e; = 200 kms™!,
At =~ 4.1 yr.

Bias against weak lines

The sample should not be biased against weak-lined quasars, which could be a possible
problem for quasars identified on the basis of their line emission. If the objects are selected
through UV excess there should be no bias. A complete quasar sample is of course ideal.
D94 prefers X-ray selected samples because they should be unbiased in equivalent widths.
The source size is however highly uncertain in X-ray and such samples will not be used here.

Flux-limited sample

The sample needs to be flux-limited to properly account for amplification bias.

The redshift and luminosity function

The luminosity function from Boyle et al (2000) is based on the 2dF quasar sample and
the LBQS sample in the redshift interval 0.35 < z < 2.3. For quasar samples at higher
redshift this luminosity function is not correct. There are indications that the bright end of
the luminosity function shows a significant steepening with increasing redshift (Boyle et al,
2000). If a sample with very high redshift is used the uncertainty of the amplification bias
will increase due to the uncertain luminosity function.

Emission lines

It is preferable to choose a low-ionized emission line because they are probably emitted from
a BLR with larger radius than high-ionized emission lines. (If the BLR is to small then it
can be magnified by small lenses.)

Quasar samples

3.2.1 Steidel & Sargent

The Steidel & Sargent sample (S&S, Steidel and Sargent, 1991, used by D94) was originally
obtained for studying Mg II absorption line systems. It contains a very high signal-to-noise ratio
spectra of 92 high-redshift quasars over the redshift range 0.7 < z < 2.7. The equivalent widths of
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CIII and MgII were originally measured to study the Baldwin effect. Candidates for the sample
were initially selected from the Hewitt & Burbidge and Veéron-Cetty & Veéron catalogues to be
bright and high in the northern sky (D94). The final number of measured equivalent widths is 87
of the 92 quasars in the sample.

The spectra were taken immediately after the quasars were selected, so this sample should be
free of the reduction of amplification bias. The effective flux limit is mp jimss = 18.08.

The sample is not complete.

Approximately two-thirds of the objects in the sample were selected by UV excess or radio
power and should not be biased against small equivalent width quasars. The remaining objects
were grism-selected and this could bias against small Wy. To test this, the distribution of the
grism-selected objects are tested with the Kolmogorov-Smirnov test (KS-test) and found to be
statistically identical to the distribution for the UVX and radio-selected quasars.

For more details of the sample see Steidel and Sargent (1991).

The other sample used by D94 was the Einstein Medium Sensitivity Survey (EMSS, D94) but
this sample will not be used here. The time delay between the photometry and spectroscopy for
this sample was 2-5 years and this could affect the amplification bias with an unknown amount.
In addition the equivalent widths were measured by hand from papercopies of the identification
spectra, and it is X-ray selected.

3
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Figure 10: Absolute blue magnitude for the objects in the S&S sample are shown together with
the effective flux limit, mp = 18.08 .

3.2.2 Large Bright Quasar Survey

Since the S&S sample is rather small and not complete other larger samples were searched for, as
the Large Bright Quasar Survey (LBQS). This survey begun 1986 with the aim of identifying a
homogeneous sample of 1000 bright quasars, 16 < mp, < 18.5, over an extended redshift range,
0.2 < z < 3.4. The spectroscopic phase of the project was essentially completed in 1989. LBQS is
estimated to be ~ 90% complete (Hewett et al 1995, Forster et al 2001).

The LBQS sample have a combination of quantifiable selection techniques, including overall
spectral shape, strong emission lines and redshifted absorption features. The LBQS thus avoids
selection effects that tend to exclude weak-lined quasars or to undersample certain redshift ranges
(Hewett et al 1995).

It is flux-limited with apparent magnitude mp = 18.85. The flux limit of this sample will be
below the magnitude at the break of the luminosity function (i.e. R will be less than 1) and the
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amplification bias will be weak (see fig. 11). Constraints on this sample can only be found for high
Q¢ and not for ¢ = 0.10 or 0.05 due to the weak amplification bias.

The other problem with this sample is the time delay between photometry and spectroscopy,
which is 1-7 years. This affects the calculation of amplification bias with an unknown amount.
Due to this uncertainty the LBQS sample cannot be used in this test.

If another lens model with a possibility to calculate the reduction of amplification bias was
adopted, it would be possible to use this sample (see section 6.3).

Absolute blue magnitude for the LBQS sample
35 T T T T

redshift z

Figure 11: Absolute blue magnitude for the objects in the LBQS sample are shown together with
the flux limit of the sample, mp = 18.85 (thin solid) and the magnitude at the break of the
luminosity function, M* (thick solid).
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4 Analysis

4.1 Properties and parameters for the Steidel & Sargent sample

From the S&S sample the measured CIII equivalent widths are used, but not the Mg IT equivalent
widths (D94 used both CIII and MglI). If a significant fraction of the apparent continuum is due
to broad, low-contrast line emission as overlapping Fe II multiplets, this would affect this test on
Mg II lines. Limits based on C III lines are unaffected.

The sample of CIII equivalent widths are divided into a high- and a low-redshift subsample.
The properties for the CIIT sample are listed in table 2.

The cumulative distributions of the subsamples are shown in fig. 12. Note the similarity in
distributions. This already suggests that the amount of lensing by compact objects is small.

Table 2: Sample properties.

Sample Redshift range | Number of | < 2z >edian | < R >median
objects
CIII S&S | 0.71 <2< 1.4 | 40 1.18 1.31
1.4<2<2.71 | 47 2.02 1.60

ClII S&S Equivalent width distribution
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Figure 12: Equivalent widths for the subsamples of CIII S&S sample.

For the low-redshift subsample the parameters w and < for an underlying log normal distri-
bution are chosen such that when lensed to the medium redshift of the low-redshift subsample,
the model gave an acceptable fit to the data (the Kolmogorov-Smirnov test was used to show the
probability of being the same distribution). Note that for different Q¢ new values of w and + are
needed.

The parameters (v and w) for different Q¢, the limiting equivalent width (Wiimit), mo (the
number of objects in the sample with W < Wi;,:) and the result of the KS-test is shown i table
3. Wiimas is chosen such that the resulting Monte Carlo probability will be as low as possible.

To obtain a better fit for Q¢ = 0.3 and 0.2, another function for the intrinsic distribution of
equivalent widths (po(Wp)) needs to be found.
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Table 3: Sample parameters.

Sample Wiimit | mo | Qe w 5 KS-test

CIIS&S | 89A [0 [030]0.2 |29 |o0.17
020 | 0.2 |29 | 046
0.10 | 0.22 | 2.9 | 0.91
0.05 | 0.25 | 2.85 | 0.87

4.2 Comparison of data to model distribution

With these parameters (w and 7) a model is generated for the high-redshift subsample, using the
medium-redshift, Wi;mst, no and < R > for different 2c. The number of small equivalent width
from the observations (ng) are then compared to the number predicted by the model. A Monte
Carlo test (based on 100,000 trials) is performed for different values of Q¢ and pinqq (corresponding
to different values of the lens mass M¢). The resulting Monte Carlo probabilities are listed in

table 5.
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5 Results

5.1 Comparison between Einstein-de Sitter cosmology and a A-dominated
Universe

The resulting models for an Einstein-de Sitter and a A-dominated cosmology is shown in fig. 13
together with the distribution of the high redshift subsample of the S&S CIII. All parameters in
the models are the same except for Qs and Q4; Q¢ = 0.3 in both models. Due to the increased
path length the new optical depth has increased compared to an Einstein-de Sitter universe (fig. 2).
This increases the probability of lensing for the same ¢ and decreases the resulting Monte Carlo
probability (i.e. the constraints on Q¢ will be stronger).

Comparing different cosmologies
1 T T
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Figure 13: The distribution of the high-redshift subsample of CIII from the S&S sample is shown
together with models with different cosmologies for Q¢ = 0.3. Qpr = 0.3 and Qa = 0.7 (thick
solid). Qu = Q¢ = 0.3, Qa = 0 (thin solid). All other parameters are the same: a = 3.41,
B =158, v=02 w=29 R=1.6, ftmes = 6.2 and 2=2.02.

5.2 Amplification bias

In addition to different cosmologies, different luminosity functions and the strength of the am-
plification bias can be compared. The strongest impact on the amplification bias here is the
fact that the new slope of the luminosity function is less steep (@ = 3.41, 8 = 1.58 compared
to @ = 3.97, 8 = 1.41). In addition the strength of amplification bias has decreased. In D94
< R >=2.164 for the S&S CIII high-redshift subsample, here < R >= 1.60. The resulting effect
is that the probability of lensing has decreased for the S&S sample and weaker constraints on
Q¢ can be set if this sample is used. This is shown in fig. 14 with Q¢ = 0.3 and in fig. 15 with
Q¢ = 0.05. The two different models in each figure have different cosmologies, different luminosity
functions and different < R >. The difference between the two cosmologies in the model distribu-
tions decreases with Q¢. Another brighter sample is needed to maintain the same amplification
bias as in D94 and make the constraints on Q¢ stronger than in D94.

The effect of the amplification bias is very strong. In fig. 16, models with and without the
amplification bias is shown for a A-dominated cosmology. With an apparent magnitude mp =
18.85 for the LBQS sample, < R >= 0.77 for the high-redshift subsample. To show the difference
in strength of the amplification bias a model with < R >= 1.2 is also shown. To obtain a correct
Monte Carlo probability it is very important to have a correct calculated amplification bias.
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Comparing different cosmologies and luminosity functions
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Figure 14: The distribution of the high-redshift subsample of CIII from the S&S sample is shown
together with models with different cosmologies, different luminosity functions and amplification
bias for Q¢ =0.3. Qpr = 0.3, QO = 0.7,0 = 3.41, B = 1.58 and R=1.60 (thick solid). Qs = 0.30,
Qp =0, a=3.97, 8 =1.41, R=2.164 (thin solid). For both models: v = 0.2, w = 2.9, z=2.02 and
MKmaz = 6.2.
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Figure 15: The distribution of the high-redshift subsample of CIII from the S&S sample is shown
together with models with different cosmologies, different luminosity functions and amplification
bias for Q¢ = 0.05. Qpr = 0.3, Q) = 0.7, a = 3.41, B = 1.58 and R=1.60 (thick solid). Qs = 0.05,
Qpx =0, a=3.97, 8 =1.41, R=2.164 (thin solid). For both models: v = 0.2, w = 2.9, z=2.02 and
Hmaz = 6.2.
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With and without amplification bias, LBQS sample
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Figure 16: The distribution of the high-redshift subsample of CIII from the LBQS sample is
shown together with models for a A-dominated Universe and with a new luminosity function,
Qu = Q¢ =0.3, Qx = 0.7, a = 3.41, B = 1.58, pmaes = 6.2, z=1.95. Without amplification bias,
v = 0.45, w = 3.15 (dash-dotted). With amplification bias: R=0.77, v = 0.42, w = 3.2 (thick
solid); R=1.2, v = 0.35, w = 3.3 (dashed).
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5.3 Upper mass limits on compact objects

In D94 the allowed Af/f < 0.25,0.50,0.75 for Q¢ = 0.1, 0.2, 1. This corresponds to upper mass

limits of M¢ = 20, 60 and 300 M, with the assumption of a BLR size of 0.1 pc (= 3.0857-10"% m).
Since the BLR size could be as small as 10> m (Kaspi et al, 2000) this affect the upper mass

limits. With this BLR size the upper mass limits in D94 are lowered to M¢ = 2, 8 and 40 M.

Here Af/f is allowed to be < 0.15, 0.25, 0.50, 0.75 for Q¢ = 0.05, 0.10, 0.20 and 0.30 respec-
tively. The corresponding upper limits on lens masses are 1, 2, 8 and 40 M. If the allowed Af/f
is lowered then the upper limits of the lens masses decreases. In table 4 the corresponding Af/f,
Kmaz and lens masses are listed for a BLR size of 10'® m calculated with the approximation (44).
If the allowed Af/f is changed, new upper mass limits can be found here.

Note that these approximative values can be compared with a more correct calculation from
(43), but then pyims is approximative. With pyimi: = 2 the resulting Af/f from (44) is ap-
proximately equal with (43) for Q¢ = 0.3, but for lower values of Q¢ Af/f from (43) increases
compared to Af/f from (44) for the same pprr. Thus the upper limits on lens masses are not
the same for different Q¢ (decreases with Q¢).

No constraints can be derived for lens masses over these upper limits. Note that if Af/f is
only allowed to be = 0.10 for Q¢ = 0.05 then the upper mass limit is lowered to =~ 0.6 Mg.

Fig. 17 show the dependence of p,,4, of the lens mass for different BLR sizes.

Maximum magnification for BLR
T T

0 /‘———*44——‘—"777“"1

10° = ——= - - )
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Lens mass [M_ ]
sun

N

Figure 17: Maximum magnification as a function of lens mass for different BLR sizes; dgrr = 10'°
m (thick solid), dgrr = 3 - 10'5 m (thin solid), dgr.r = 10'°m (dashed). The horizontal lines
indicate the maximum magnification for which lensing of the BLR would reduce the fraction of
weak-lined objects by 15% (maz = 1.18, thin solid), 25% (4maz = 1.33, dash-dotted), 50%
(#maz = 2, dashed) and 75% (Umaz = 4, dotted).
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Table 4: Upper mass limits.

Af/f | pBLr | Mc [Mg)]
0.10 1.11 0.6
0.15 1.18 1.0
0.20 1.25 1.5
0.25 1.33 2.1
0.30 1.43 2.8
0.35 1.54 3.7
0.40 1.67 4.8
0.45 1.82 6.2
0.50 2.0 8.1
0.55 2.22 11
0.60 2.5 14
0.65 2.9 19
0.70 3.33 27
0.75 4.0 40

5.4 Lower mass limits on compact objects

The lowest lens mass this test can constrain depends on the source size, (¢, the redshift of the
sample (through the optical depth) and the total number of objects in the high-redshift subsample.

In table 1 the corresponding lens masses, source sizes and L4, are listed. For very low p,qz
no constraints can be obtained for these lens masses because the lenses are to small to take the
object into the small equivalent region. If piy,q; = 1.2 then the resulting Monte Carlo probabilities
are ~ 1 thus pmez = 1.2 is not listed in the resulting table 5. The lowest lens mass this test can
constrain therefore corresponds to pimqr = 2.17.

Another argument against using very small p,,,4, is the fact that the lens model is not correct
in the small magnification region (see section 2.6).
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5.5 Constraints on Q¢

The resulting Monte Carlo probabilities for finding the observed number of weak-lined objects
are listed in table 5. Based on these probabilities ¢ is constrained for different source sizes
(fig. 18) with max p(n < ng) = 0.02. With the assumption of a source size equal or less than
10'® m the constraints of D94 are improved: ¢ < 0.05 for M¢ = 0.01 — 1 Mg, Q¢ < 0.1 for
Me =0.01 — 2 Mg, Q¢ < 0.2 for Mc = 0.001 — 8 Mg and Q¢ < 0.3 for M = 0.001 — 40 Mg.

For small source sizes the Monte Carlo probabilities are only calculated for very small lenses,
because for high fi,,4, the probabilities will be the same (see section 2.10). For I, = 10'2 m, Q¢ is
thus < 0.05 for lenses in the mass range 10~ to 1 M, even if the probabilities were only calculated
up to M¢ = 0.01 Mg.

Constraints on QC for different source sizes
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Figure 18: Upper limits on Q¢ for differents source sizes and lens masses inferred from the resulting
Monte Carlo probabilities.
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Table 5: Monte Carlo results for CIII S&S sample.
102m 3.102m 1013m 3-108m 10 m
Q. Bmae | Mo [Mo] | Mo [Mo] | Mc [Mg] | Mc [Mg] | Mc [Mg] | P(n < no)
0.30 [ 2.17 [ 10°° 1073 0.1 0.00006
2.27 10~4 0.01 < 107°
6.18 | 10~* 102 1 <107°
6.51 103 0.1 <10°°
19.32 | 103 0.1 10 <107°
20.36 102 1 <105
61 0.01 1 <107
64 0.1 10 <105
0.20 [ 217 [10°° 10~3 0.1 0.00129
2.27 104 0.01 0.00087
6.18 | 10~¢ 102 1 <10°°
6.51 10-3 0.1 <105
19.32 [ 103 0.1 10 <107°
20.36 1072 1 <105
61 0.01 1 <107°
64 0.1 10 <107°
0.10 [ 217 [ 1075 103 0.1 0.05372
2.27 104 0.01 0.03994
6.18 | 10°% 102 1 0.00060
6.51 103 0.1 0.00032
19.32 | 1073 0.1 0.00017
20.36 102 1 0.00016
61 0.01 1 0.00015
64 0.1 0.00014
0.05 [ 2.17 [ 10°° 103 0.1 0.19135
2.27 104 0.01 0.16569
6.18 | 10~* 102 1 0.01585
6.51 10-3 0.1 0.01535
19.32 | 103 0.1 0.00798
20.36 1072 1 0.00786
61 0.01 1 0.00733
64 0.1
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6 Discussion

6.1 Comparison with the constraints on ¢ from D94

The constraints calculated here are even stronger when compared to D94, except for the upper
mass limits that have decreased due to a smaller BLR size.

How is this possible if a weaker amplification bias for the S&S sample has reduced the proba-
bility of lensing (even with the increased optical depth from a A-dominated Universe)? The reason
for this is that D94 did not use the correct luminosity function for the S&S sample! The luminosity
function intended only for the EMSS sample (from Maccacaro et al 1991, with o = 3.05, 8 = 1.35)
were also used for the S&S sample where the luminosity function from Boyle (1990) should have
been used (with @ = 3.97, 8 = 1.41). Their Monte Carlo results for the S&S sample are thus not
correct and should have been much lower for this sample and their constraints on ¢ could have
been much stronger!

Here the the delta function for pa(u.) at the cutoff is added at u, = p2,,, and not as in
D94 at gy, = fmaeez.- The argument for this is that if the minimum magnification for ps(u,) is
w2, the maximum magnification should be p, = p2,... In addition the resulting Monte Carlo
probabilities for 1ow fiymq and the figures here with the calculated models for different 4z (With
an Einstein-de Sitter cosmology) only agrees with D94 if the delta function is added at p, = p2,,,-
The conclusion is that the cutoff for p (i) should be placed at ., = p2,,, and that this probably
is another misprint in D94.

6.2 Possible uncertainties

The resulting constraints on {2¢ is dependent on a number of things:

The S&S sample is not complete. This could affect the distribution of equivalent widths and
the obtained constraints on Q¢.

The amplification bias needs to be correct calculated. This is dependent on a correct luminosity
function (e, 8 and M*) and a correct calculated < R >edian-

The upper mass limits are uncertain due to the fact that Af/f is arbitrary chosen.

The lensing model is approximative but conservative because it tends to underestimate the
true amount of lensing.

If the standard model of quasar structure is not correct as suggested by Schild and Vakulik
(2003) the lensing model needs to be adjusted. In their model a luminous inner accretion disc
edge and outer ring-shaped structures where the emissions lines form are suggested. This would
affect the magnification signature of the microlensing event.

The cosmological evolution of the intrinsic distribution of equivalent widths cannot explain
the small number of equivalent widths objects. The evolutionary trend is in fact towards smaller
equivalent widths at higher redshift, which is the opposite to what is needed to mask microlensing
(D94).

Finally, there is a possibility of bugs in my matlab codes. To check my codes I reproduced all the
Monte Carlo probabilities and every figure in D94 (the optical depth, maximum magnification, the
model distributions for both the EMSS and S&S samples) and they all agreed (with an Einstein-
de Sitter cosmology), except for the final models of the S&S sample. If the luminosity function
from the EMSS sample was used instead for this sample, then these figures and Monte Carlo
probabilities agreed too.

6.3 Continuing this work

The results in this work can be improved by using a better sample with many objects at high
redshift, with high amplification bias and where the time delay between the selection of quasars
and spectroscopy is short.

It would also be interesting to test another lens model from Zackrisson and Bergvall (2002)
to see if even stronger constraints can be inferred. A more correct calculation of the upper mass
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limits can also be done with this lens model. The reduced amplification bias in the LBQS sample
may be calculated and then this sample can be used.

6.4 The future of microlensing in the search for dark matter

Cluster-cluster microlensing will be used by Tomonori Totani (2002) in an attempt to set limits on
intracluster compact objects for a very wide range of lens masses (10~% — 10'° Mg). Two clusters
which are almost in perfect alignment, A2152 (in the Hercules supercluster) at z=0.04 and another
just behind it at z=0.13 will act as source and lens. With a deep and wide monitoring of the region
with the 8 m Subaru/Suprime-Cam telescope, extremely magnified stars in the background cluster
by microlensing of compact objects in A2152 may be detectable. This method is very powerful.
Any compact object in this mass range can be detected or rejected as a dominant component of
dark matter. The observations have already begun and will continue in June, 2003.

There is another form of microlensing called astrometric microlensing, and is caused by nearby
lenses. This form of microlensing has not been observed yet, but it will be within the next decade
by one of the microsecond astrometric satellites, SIM (Space Interferometry Mission) or GAIA.
If a microlensing event with a nearby lens is monitored by GAIA and the Einstein crossing time,
the relative parallax of the source with respect to lens can be inferred from GAIA, and the source
distance is known, then a complete solution of the microlensing parameters is available (Evans,
2003).

Other galaxies as M33 are also interesting targets for dark matter studies with microlensing
(Evans, 2003). This galaxy is a low luminosity spiral galaxy in the Local Group. The dark matter
content of low luminosity and dwarf galaxies are different from big bright galaxies. In M33 it
is clear that the dark matter must dominate even the central parts, in contrast to the Milky
Way which is dominated by luminous matter within the inner few kpc. The MACHO and EROS
projects have demonstrated that substellar compact objects are not the dominant contributor to
the Milky Way’s dark halo. But this conclusion cannot be extended to galaxies like M33 without
further experiments.
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7 Summary

The upper limits on the cosmological density of compact objects has been improved compared to
that of D94 by:

Generalizing from an Einstein-de Sitter Universe to a A-dominated Universe with Q3 = 0.3
and Q4 = 0.7. A new optical depth is derived and calculated with the new cosmology. Due to the
increased path length the optical depth is increased and therefore the constraints on Q¢ will be
stronger with a A-dominated cosmology.

The situation when Q¢ # Qjy is solved and different values of Q¢ with constant Qp; = 0.3 is
calculated.

A new luminosity function (Boyle, 2000) is adopted and new strengths of the amplification
bias are found. This decreases the amplification bias for the sample used here and by D94 (the
constraints are weaker for this sample).

Uncertainties of the source size are considered. This decides the maximum magnification of
the source for different lens masses and determines the lower mass limits in this test. The source
size is found to correlate with lens mass for a constant magnification. If the CR is large then only
high mass lenses can be constrained, whereas small CR sizes can constrain very small lenses.

Smaller sizes of the broad line region are taken into account. This lowers the upper lens
masses that can be constrained by this test. Due to the arbitrary choice of the allowed value of
the reduction of small equivalent width objects these upper mass limits is uncertain.

New improved constraints on {2 have been calculated using the same sample as by D94. With
the assumption of a source size equal or less than 10'® m the constraints of D94 are improved:
Q¢ < 0.05 for Mo = 0.01-1Mg, Q¢ < 0.1 for Mg = 0.01-2Mg, Q¢ < 0.2 for Mo = 0.001-8Mg
and Q¢ < 0.3 for M¢ = 0.001 — 40 M.

All these issues have been examined by implementing the D94 method in matlab.
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9 Appendix A

1. MC_result_grid.m This code calculates the resulting Monte Carlo probability for a given Q¢
with different p,,q2-

Subroutines:

e prob_dist.m
This function calculates the emission line equivalent width distribution (equation 47).
Subroutines:

— optical_depth.m
Calculates the new optical depth (equation 28).
Subroutine:

* lambda new.m
Calculates the new affine parameter (equation 10).

— pl_total old.m Calculates the total p; to p = 5003. Needed for the delta function
added at pmaz-

— p2_total old.m Calculates the total ps to u = 5003. Needed for the delta function
added at p2 .

— POWO.m A function which calculates the unlensed equivalent width distribution
(equation 48).

e MonteC_grid.m

This function Monte Carlo simulates 47 (the total number of objects in the high redshift
subsample) equivalent widths for the model probability distribution.

2. tao_new.m Calculates and plots the optical depth as a function of redshift (equation 28 and
fig. 2)

Subroutines:

e optical depth.m
Subroutine:

— lambda _new.m
3. mymax.m Calculates and plot the maximum magnification as a function of lens mass for a
specific source size (equation 31 and 32)

Subroutine:

e optical depth.m
Subroutine:

— lambda_new.m

4. R_median.m Calculates < R >,,edian for a specific apparent magnitude and < 2 >edian-

Subroutine:

e angsiz.m
Calculates the integral for the angular size.

5. absmag.m Calculates and plot the absolute magnitudes of the objects in the LBQS sample
together with the flux limit of the sample and magnitude at the break of the luminosity
function.

Subroutine:
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e CITI_LBQS

A file with the apparent magnitudes, redshifts and equivalents widths for the objects
in the S&S sample.

e angsiz.m

6. absmag_SS.m Calculates and plot the absolute magnitudes of the objects in the S&S sample
together with the flux limit of the sample.

Subroutines:

e angsiz.m

e CIII alla A file with the absolute magnitudes, redshifts and equivalents widths for the
objects.

7. cum_obs.m Plots the cumulative probability for the S&S sample (or LBQS sample) for the
low or high redshift subsample.

Subroutine:
e CIII_alla

8. MonteCarlo.m Monte Carlo simulation and plotting of 10,000 equivalent widths from equa-
tion 47.

Subroutine:

e prob_dist.m
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