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Abstract

It is conventional to adopt the Press-Gunn approximation when carrying out mi-
crolensing investigations. This means that the lensing objects are assumed to be
uniformly and randomly distributed throughout the universe with a comoving den-
sity. In order to test the applicability of this assumption, a code has been developed
which is able to model more realistic mass distributions along the line of sight to a
pointlike light source at arbitrary redshift. Therein the effects of the mass distri-
bution of dark halos, the dark halo density profiles, halo substructure, halo-to-halo
clustering and the fraction of mass clustered in halos are all taken into account.
The obtained average matter density distributions showed substantial deviations
from the predictions by the Press-Gunn approximation. While the existence of halo
substructure is negligible, halo-halo clustering has a significant impact along the
line of sight to light sources at more modest distance (z < 1). The fraction of mass
clustered in halos turned out to be an important variable at any redshift, indicating
a mass resolution problem. Considering variations to such an extend, the quality of
the Press-Gunn approximation has to be assessed as poor and the implementation
of more realistic matter distribution models into microlensing studies is advised.
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Chapter 1

Introduction

Our present comprehension of the dynamics of the universe on large scales suggests
that most of the material in the universe is not luminous. Its gravitational impact
on luminous matter is however observable. There is diverse observational evidence
that this dark matter is distributed throughout galaxies and reaches out beyond
the luminous material in so called ”halos”.

The probably most established evidence for the existence of dark matter is the
observed flatness of the rotation curves of spiral galaxies. While the light in these
systems falls off exponentially with distance from the galaxy’s centre, its rotational
velocity is constant out to the limits of detection. But if light would mark mass,
the rotational velocity should fall off with radius as oc 4/1/r. This indicates that
there has to be much more mass existing in these systems than can be accounted
for by luminous matter.

Furthermore it has been shown in numerical studies as well as in N-body simula-
tions that the flattened disks of ”cold” spiral galaxies supported mainly by rotation
are subject to large-scale (barlike) instabilities. As our own galaxy belongs to this
kind of systems and doesn’t seem to exhibit such an instability, there has to be some
stabilising process. Models adding a spherical halo component of substantial mass
to the disk have been considerably successful in producing the required stability
(Ostriker and Peebles, 1973).

Dark halos enclosing galaxies have also been used to explain the rotational ve-
locities of binary galaxies (Ostriker et al., 1974), warped disks (Tubbs and Sanders,
1979), H I flaring (Sanders, 1986) and the confinement of radio jets and lobes (Val-
tonen, 1980). As there are also other theories that can explain these observations,
none of them can however be assumed to be thorough evidence for the existence of
dark halos.

Since the simple concept of galaxies forming inside dark halos can explain many
different types of observations though, their existence is today generally accepted.

Gravitational microlensing is currently the main technique for detecting and
constraining compact objects in the subsolar mass range. It is the result of bending
of light rays from cosmologically distant sources by gravitational fields along the line
of sight and therefore sensitive to both luminous and dark matter. These compact
objects are likely to be associated with the aforementioned dark halos.

Microlensing can plainly be detected through flux variability. The idea that
most quasar variability originates from microlensing due to such compact objects
has amongst others primarily been championed by Hawkins (e.g. Hawkins (1996),
Hawkins and Taylor (1997), Hawkins (2001)). Other characteristic signatures for
microlensing are uncorrelated flux variations in the different images of multiply-
images quasars (Schild, 1996), differential magnification of emission regions having
different scales (Dalcanton et al., 1994), apparently repeated gamma ray bursts



(Marani et al., 1999) and a broadening of the observed absolute brightness distri-
bution of standard candles (Metcalf and Silk (1999), Wang (1999)).

Virtually all papers on microlensing by cosmologically distributed compact ob-
jects assume them to be uniformly and randomly distributed along the line of sight
with a constant comoving density. This assumption is the so-called Press-Gunn
approximation (Press and Gunn, 1973).

If this assumption does not correspond to the prevailing conditions, the results
derived from many previous studies of microlensing at cosmological distances may
be seriously flawed (Wyithe and Turner, 2002). These include not only constraints
on the mass function, velocity dispersion and cosmological density of the microlenses
but also predictions on the magnification bias and thereby potentially more funda-
mental cosmological quantities (Seljak and Holz, 1999).

The purpose of my work is to test the applicability of the Press-Gunn approx-
imation by constructing a code that simulates the mass distribution along the line
of sight to a light source at cosmological distance using Monte-Carlo methods.

Over the last few decades, the cold dark matter (CDM) model has been studied
in detail. Its success in reproducing observational results, both on galactic and on
cluster scales, has turned it into the standard paradigm for the formation of struc-
ture in the universe. Current cosmological data favours a ACDM cosmology with
a present matter density s ~ 0.3 and the density for the cosmological constant
A ~ 0.7 (in units of the critical density). This agrees with a generic prediction from
inflation, namely ;,; = Qa7 + A = 1, a ”flat” universe.

In conformance with recent results from the Sloan Digital Sky Survey (SDSS) in
combination with WMAP (Tegmark et al., 2004), the preset cosmological parame-
ters used throughout this paper are 23y = 0.3, with a baryonic density of 2 = 0.04
and the CDM density Qcpy = 0.26, A = 0.7 and the Hubble constant Hy = 70
km Mpc~t s~L.

If desired, the cosmological parameters may be modified. The applied formulae
hold for cosmologies in which the universe is composed of photons, baryons (and
their accompanying electrons), massless neutrinos, cold dark matter and a potential
cosmological constant. The calculations are applicable to Einstein-de Sitter (Qr =
1,A =0), open (R < 1,A =0) and flat (Qpr+A = 1) universes (due to limitations
of the density profile formalism, compare Navarro et al. (1997)).

This paper is organised as follows. In Chapter 2 the applied formulae are given.
Chapter 3 describes the numerical method used for the simulations. In Chapter 4
I discuss the results obtained by the output of my code. Conclusions are drawn in
Chapter 5. The code itself and an example of adequate input are given in Appendix
A and Appendix B respectively.



Chapter 2

Theoretical framework

As discussed in the introduction, current models of large scale structure predict
dark matter to be located in a hierarchy of dark matter halos. Assuming that
the compact objects giving rise to microlensing are composed of dark matter, it is
essential to have profound knowledge of the properties of dark halos to be able to
draw conclusions on the distribution of microlenses. Hence I begin by explaining
the code’s underlying formulae describing the physical characteristics of the dark
matter halos.

2.1 Mass distribution of dark matter halos

It proves to be advantageous to use the quantity Ino—!(M,z) instead of M as the
mass variable. 0%(M,z) is the variance of the density field at redshift z in linear
perturbation theory, smoothed with a real-space window function.

Following Mitchell et al. (2004) and Eisenstein and Hu (1999), this smoothed
variance is given in terms of the power spectrum P(k) of the linear density field
extrapolated to redshift zero by

o2(M, z) — b;fr—? /0 " k2P (k) W (k: M)[2dk 2.1)

The normalised linear growth factor is calculated from b(z)=D(z)/D(0), where
the growth function is given by

D(z) = (M)&(z){g(zfﬁ _Qa() + [1 N Q(z)} [1 N QA(Z):| }1’ (2.2)

1+z2 2 2 70
where
Q(2) = (1 +2)°9 *(2) (2.3)
and
Qn(2) = Ag™%(2), (2.4)
with
) =1 +2)°3+(1-Quw—A)(1+2)?+A (2.5)

and zeq as defined below (2.12).

Wr(k;M) is the Fourier transform of a real-space window function Wg(r). In
this project I used a spherical top hat of radius R(Mg),

1, ifr<R

Wh(r) o« { 0, otherwise, (2.6)
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Wr(k) = W(sin kR — kR coskR), (2.7)
Mg = %’rpR?’. (2.8)

The power spectrum of the density fluctuations is constructed from the transfer
function in the usual way:

k
P(k) = 2n°8% (7> "k T (), (2.9)
0
where dz is the amplitude of perturbations on the horizon scale today, given by
6H — 195 X 107591—”0.35—0.19anM—0.17ﬁefﬁ70.l4ﬁ2 (A — 0) (210)

6H — 194 X 107591—”0.785—0.05 1DQM6*0-95’5*0-169’52 (A — 1 _ QM) (211)

and 7 = n — 1, where n is the initial power spectrum index, which is equal to 1 for
a scale-invariant spectrum.

I restrict my calculations to a general CDM plus baryon universe to be able to take
advantage of a commonly used fitting formula for the matter transfer function 72 (k)
which is valid for both large and small scales (Eisenstein and Hu, 1998).

The physics governing the evolution of density perturbations in such a cosmology
features three unique length scales:
e The horizon size at matter-radiation equality

The transition from a radiation- to a matter-dominated universe occurred
roughly at
Zeq = 2-50 x 10*Qprh%05 7, (2.12)

where h = Hy/(100 km s ! Mpc!), the Hubble parameter, and @57 =
Teomp /2.7, with the cosmic microwave background temperature Tops.

This leads to a particle horizon scale at the equality epoch of
keq = 7.46 x 1072Q/h%0, 2 Mpc ™, (2.13)
which sets the dynamics of the expansion and perturbation growth.

e The sound horizon at the time of recombination

Defining the drag epoch z4 as the time at which the baryons are released from
the Compton drag of the photons and using numerical recombination results

gives
(QMh2)0.251 9
=1291 1 Qph2)°2 2.14
2a = 129197 Groqpnzyoses (L + ()], (2.14)
c1 = 0.313(Qarh?) 74191 4 0.607(Qarh*) 2674, (2.15)
cz = 0.238(Qprh?)0223, (2.16)

Prior to z4, small-scale perturbations in the photon-baryon fluid propagate as
acoustic waves with the sound speed ¢, = ¢/[3(1+R)]'/2, where R is the ratio
of the baryon to photon momentum density,

R = 3py/4p, = 31.50,h%O5 7(2/10%) 7. (2.17)



Hence, if defining the sound horizon at the drag epoch as the comoving dis-
tance a wave can travel prior to redshift z;, the above implicates

\/ 6 ln\/l + Rg++/Ra+ Req
Req 1+ v/Req ’

where Rq = R(z4) and Req = R(zq). In the presence of baryons, the growth
of CDM perturbation is suppressed on scales below the sound horizon.

t(za)
s:/ co(1+ 2)dt = (2.18)
0

3keq

e The Silk damping length at recombination

On small scales, the coupling between the baryons and the photons is not
perfect, such that the two species are able to diffuse past one another. This
so called Silk damping scale is well fitted by

Eoitr = 1.6(Qh%)%52(Qarh?) "1 + (10.4Q3,h2) 0% Mpc™.  (2.19)

Thus the transfer function in a CDM-baryon universe should be divided into
baryon- and cold dark matter contributions,
973

T(k) = @Tb(k) +

Q.
Qp

T.(k), (2.20)

as the two species were dynamically independent before the drag epoch and after-
wards their fluctuations are weighted by the fractional density they contribute. It
should however be noted that T and T, are no true transfer functions themselves,
as they do not reflect the density perturbations of the respective species today.

To introduce the suppression of the growth of CDM perturbations by baryons as
mentioned above, two solutions near the sound horizon are interpolated, resulting
in

Tc(k) = ffo(k, 1’/66) + (1 - f)TO(ka acalgc) (2'21)
where 1
f= 1+ (ks/5.4)2" (2.22)
and _
Tk = | B LD e ks o) (2.23)

|1+ (ks/5.2)2 " 1+ (Bb/ks)?
with jo(z) = (sin x)/x, the spherical Bessel function,

S

s(k) = , 2.24
¥ = (5 B )T 229
the effective sound horizon, and the node shift parameter
Brode = 8.41(Qh?)%43%. (2.25)
The pressureless transfer function T is given in terms of
- In(e + 1.88.9)
To(k, ac, = , 2.26
o(k, e, Be) In(e + 1.88.9) + Cg? (2.26)
where 14.2 386
C=— 2.27
Qe + 1+ 69.9¢1-08° (2.27)
with the variable
k k
— _ 92 9] h2 -1 = — 2.28
1 (Mpcl) R S TYITS (2.28)
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Figure 2.1: The characteristic mass scale M,(z), given by o(M, z) = §.(z), using
the preset parameters.

and the CDM suppression

Qe = al_ﬂb/QMaz_(Qb/QM)3, (229)

with
a1 = (46.9Q3,h%)%70[1 4 (32.1Qp,h%) 0532] (2.30)

and
as = (12.0Qprh?)%44[1 + (45.0Qp,h%) 0582, (2.31)

the shift in CDM log, 3., as

Bt =14 b1[(Q/Qr)* —1], (2.32)
with
by = 0.944[1 4 (458Qrh?)~0-708)~1 (2.33)
and
by = (0.395Q k) 00266, (2.34)
the baryon suppression
1+ 2
= 2.07kegs(1 Eare] i | 2.
ap = 2.07keqs(1 + Ry) G<1+zd>’ (2.35)
where
Vity+1
=y| —64/1 2 yo 47 2.
G(y) y[ 6v1+y+( +3y)ln<m_1 (2.36)
and
% %
Bp =05+ — + (3 —-2-" )/ (17.2Q3,h2)2 + 1. (2.37)
Qur Qur

An elaborate instruction on how to calculate the power spectra for a wider range
of cosmological parameters and an other popular choice for the window function are
given in the paper by Eisenstein and Hu (1999).
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Figure 2.2: Comoving mass function for varying redshift using the o2-approximation
(2.38), the Seth & Tormen form (2.41) and the preset parameters.

In order to ensure the efficiency of my method of computation I adopt an estimate of
the variance o2, admissible under the assumption of a simple power law spectrum,
P(k)ox k™77 T%(k) (Yano et al., 1996):

M —(n

o2(M, 2) :5§(z)(m) (ness+3)/3, (2.38)
where n.f¢ is the effective slope of the power spectrum. According to Reed et al.
(2003), nesy is set to -2.15 which represents an applicable approximation over the

required ranges in halo mass and redhift.
M, (z) is the characteristic mass scale such that o(M,(2)) = §.(z), with

0.15(127) 3 [Qar(2)]°018%  if Qpr < 1 and A =0,

O = 2.39
() { 0.15(127) 3 [ (2)]°0055  if Qpp + A = 1, (2:39)

the critical threshold of the initial overdensity for spherical collapse at z. To deter-
mine the characteristic mass scale, M, (z), I use the accurate machinery as described
above.

Using these quantities the halo mass function f(o,z) is defined as

M dn(M,2) (2.40)

f(o,2) p(z) ding—1"’

where p(z) is the mean density of the universe at redshift z and n(M,z) is the
abundance of halos with mass less than M at that time (Jenkins et al., 2001).

As indicated by N-body simulations of structure formation in various cold dark
matter models, the mass function is well fitted by a modification of the Press-
Schechter function introduced by Sheth and Tormen (1999):



F(0;8—T) = A\/?[H (;;2 )p}%exp [_2‘;‘22] (2.41)

with the fitting parameters a=0.707, p=0.3 and A(p)=0.3222.

Equation (2.41) shows the convenience of using Ino~! as the mass variable.
The mass function has no explicit dependency on redshift or power spectrum, but
describes structure in all gaussian hierarchical clustering models at all times in any
cosmology, provided that abundances are plotted in the f - In(d./o) plane.

Combining (2.41) with (2.40) then gives the mass function in the form used in my
simulations:

dn(M,z)  p(z) dlno™! 2a

dlogM M dlogM T

o? é —ab?
p| ¢ c
1+ (a(sf) ] s l 552 ] (2.42)

The performance of the mass function using the above mentioned approximations
can be assessed as good when comparing to corresponding N-body data (e.g. Reed
et al. (2003), Kravtsov et al. (2004)).

2.2 Halo density profile

As generally accepted, I assume that the halo density distribution follows the equi-
librium density profiles of dark matter halos in a hierarchically clustering universe
obtained in high-resolution N-body simulations (Navarro et al. (1997), hereafter
NFW). It can be expressed as a simple analytical function, namely

p(r) _ Pe
perit  (r/rs)(L+7/rs)?

(2.43)

where 7, is a scale radius, p. is a characteristic (dimensionless) density and pepiz =
3H?/8xG is the critical density for closure.
This can be transposed into the following expression:

_ 3m3

p(r) = 51+ z)3 v pe (2.44)

Q(z) cx(1 + cz)?

where x = 1/rg99, with the halo virial radius defined as

M 1/3 Qs —-1/3
o —2 —1;—-1
7200 = 1.63 x 10 (the) (Q(z)) (1 + Z) h kpC, (245)

the radius which spans a sphere so that the mean enclosed density is 200 times the

critical value, p.rit(2), and Q(z) as given by equation (2.3).
¢ = Tggp/7s is the concentration parameter given by

—0.084
e (M (2.46)
1+2z\h M,

(Oguri and Lee, 2004) and linked to the characteristic density, p., by

w @
3 In(1+c¢)—c/(1+¢)

Pe = (2.47)
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Figure 2.3: Redshift dependence of the average subhalo mass fraction, < f; >, for
parent halos of 4 different masses. Each curve is labelled by M(z) (in h~*My).

2.3 Substructure

The formation of structure in our universe processed, according to the standard
CDM scenario, hierarchically. Small-scale fluctuations collapsed first into virialised
objects whose inner regions were, due to their high compactness, often able to
survive accretion onto a larger system and thus to become self-bound subhalos of
their host. The evolution of this substructure is governed by the forces that try to
dissolve it: tidal forces, impulsive collisions and dynamical friction. Thereby the
subhalo will experience mass loss while the parent mass, M, increases on account
of onward merging and accretion.

Assuming that the average distribution of subhalo orbits is independent of parent
halo mass, an average mass loss rate can be considered which only depends on
redshift and the momentary mass ratio of subhalo to parent halo, ¥ = m/M.

By matching the subhalo mass function (SHMF) of galaxy- to cluster-sized dark
matter halos achieved from high-resolution numerical simulations, an average SHMF
with a Schechter function of the form

d;i:q: - Bmv_ a) (%) _aewp< - %) (2.48)

is obtained, where

fs

v = P(l—a, 1/,6) —P(l—a, 10—4/ﬂ)’ (2.49)

the normalised total subhalo mass fraction, with the subhalo mass fraction, f,,
fitted by

log[< fs >] = \/0.4(log[M/M,] + 5) — 2.74 (2.50)

with P(a,x), the incomplete Gamma function, and M,, the critical mass scale as
defined above.
The power-law slope « scales nearly linearly with log(M/M.), which is best fit
by
a = 0.996 — 0.028log(M/M,) (2.51)
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Figure 2.4: Example of subhalo distribution inside a parent halo of mass M =
2.5 x 102 Mg, at redshift 0. Purple subhalos are located in the foreground while
turquoise ones are farther.

while the parameter 3 has a best fit of 3 = 0.13 (van den Bosch et al., 2004).

So both the slope and the normalisation of the subhalo mass function depend
solely on the ratio of parent halo mass, M, and characteristic mass, M,. This merely
reflects a halo formation time dependence. Parent halos that form earlier have a
lower subhalo mass fraction, because there is relatively more time for subhalo mass
loss to operate.

When analysing the results of several high resolution halo simulations, the evidence
is that the distribution of the subhalos within their parent halo generally speaking
does neither depend on the subhalo nor the parent halo mass. It appears however
that as the density profile of the parent halo becomes more concentrated, so does
that of the subhalo population, too. This effect is yet much weaker for the subhalos
than for mass as a whole.

Following Gao et al. (2003), the radial distribution of subhalos within their
parent halos is well fit by

n(<z) (1+ac)z?

N = cprp— (2.52)

where x is the distance to the host centre in units of 7299 (2.45), n(x) is the number
of subhalos within x, N is the total number of subhalos inside 7999, a = 0.244, a =
2, 8= 2.75 and ¢ = r5/ra00 is the concentration of the host halo (2.46).

Since the above mentioned form of the SHMF is valid for parent halo masses between
~ 10 to 10'°h~1 M, and a subhalo to parent halo mass ratio, ¥, which obeys -4
< log¥ < 0 (van den Bosch et al., 2004), the default subhalo mass boundaries are
set to 5 x 108 M, respective 101 M and only one level of substructure is allowed,
meaning that there is no generation of substructure within subhalos.

10
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Figure 2.5: Graphic display of a cut-out of the GIF halo catalogue for z = 1.05.
The spatial extend of each halo is assessed by its respective virial radius (compare
equation (2.45)).

2.4 N-body simulations

As became apparent above, cosmological N-body simulations play a pivotal role in
the study of cosmic structure formation.

In this methodology, initial conditions are set at an early epoch by using linear
theory to calculate the statistical properties of fluctuations. Such a computation
requires some specific mechanism for generating primordial structure, together with
assumptions about the nature of the dominant dark matter component and the
global cosmological parameters. N-body simulations are then used to follow the later
evolution of the dark matter into the nonlinear regime where it can be compared
with the large-scale structure in galaxy surveys.

Additionally to generating halos according to the halo mass function as derived
above (2.42), my code offers the option to directly use N-body data which is taken
from the GIF N-body simulations of the ACDM model, coupled to a semi-analytic
galaxy formation model (Kauffmann et al., 1999a).

The code used for the GIF simulations is called Hydra. It is a parallel adap-
tive particle-particle particle-mesh (AP3*M) code (for details see Couchman et al.
(1995), Thomas et al. (1996)). The data are publicly available at www.mpa-
garching.mpg.de/GIF/.

T used the halo catalogues, which are given at various redshifts in a comoving
cosmological simulation box of size 141 A~ 'Mpc, to extract information about the
mass and the respective coordinates of halos. The cosmological parameters of the
GIF ACDM model are given by Qp = 0.3, A = 0.7, h = 0.7 and o3 = 0.9,
corresponding to the default parameters used in the program.

A specification on how these data are employed can be found in section 3.1.2.

11



2.5 Smooth matter

As the code only accepts a finite mass range for generation of haloes, the question
arises which fraction of the total matter density (Q(2)pcrit(2)) actually is concen-
trated in haloes within these limits.

The program accepts in fact several options which can be selected in the input
file (see appendix B). These are:

All mass is clustered in halos. Any simulation volume comprises halos of
masses within the set interval which, when summed up, correspond to the criti-
cal mass expected for the selected cosmological parameters and time. The mass
distribution of the halos matches the one derived in section 2.1.

The fraction follows the mass function. Halos are generated according to the
Press-Schechter mass function (2.42). All halos of masses outside the mass range
contribute to a background density (see curve "Press-Schechter” in figure 2.6).

The fraction follows the GIF data. The halo generation is carried out perti-
nent to the the mass distribution within the preset mass range which corresponds
to the span of halo masses in the N-body simulations of the GIF project. The frac-
tion pratos/Pmatter(2) obeys the performance of the same quantity calculated from
the GIF data (see curve "GIF data” in figure 2.6). The discrepancy between the
total mass and the critical mass of the simulation volume is smoothly distributed
as a background density, calculated by a 5th degree polynomial fit which is of good
quality up to a redshift of 10.

The disagreement in the outcomes of the GIF data method and the Press-
Schechter mass function approach is striking. This problem is however recognised
by the scientists involved in the GIF project (Kauffmann et al., 1999a) as well as by
Sheth & Tormen (Sheth et al., 2001). For halo masses between 10'! and 10 My

T T T
— Press—Schechter
- - GIF data i

Press-Schechter adjusted by a factor 2

Figure 2.6: Evolution of ppaios/Pmatter(z) using different manners of determination
as discussed in the text and the preset parameters (mass range 10! — 10 M).

12



(the default mass range), the Press-Schechter theory predicts roughly twice as many
halos at redshift 0 as are actually found in the GIF simulations for both the 7TCDM
and the here used ACDM cosmologies. As indicated by the pertained persons,
most of the missing mass in the N-body simulations is in the form of ”unresolved”
material - single particles or groups with less than 10 members.

Figure 2.6 shows also the fourth option:

The fraction follows the mass function adjusted by a factor 2 This ap-
proach proceeds identically to the original Press-Schechter method but simply mod-
ifies the halo number density with the above mentioned factor 2. Although this
entails an enhancement in the consistency of GIF data and Press-Schechter the-
ory for certain redshifts, it is commended to use the Press-Schechter machinery or,
for a direct comparison with the implementation using N-body data, to use the
Phalos/ Pmatter(2) fraction which is following the GIF data.

13
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Chapter 3

Numerical method

The basic concept of my approach consists in generating a cylindric volume between
the observer at redshift zero and a light source at redshift z and subsequently
determining the mass distribution along the line of sight, which is represented by a
small cylinder aligned to the axis of the larger simulation cylinder (see figure 3.1).
Thereto the code divides the simulation volume into a number of subvolumes and

determines the ratio of actual mass density to expected mass density, 5 £ (2 ) for
exp\%n

each subcylinder.

A
[ J

I i S
o
[
o
&S
:
>

-CP ;"

Figure 3.1: Schematic diagram of the basic idea of the method. The observer is
symbolised leftmost, the light source on the right. Top panel: Press-Gunn approx-
imation. The compact objects are uniformly and randomly distributed. Middle
panel: The compact objects are associated with dark halos which are randomly
distributed. Bottom panel: The compact objects are associated with dark halos
which cluster.
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3.1 Large / small cylinder

When deciding which value to assign to the radius of the large cylinder, the size
of the simulation objects has to be considered. The simulation cylinder radius has
to be larger than the virial radius of a maximum mass halo to avoid errors due to
clustering effects around the line of sight. To ensure the codes efficiency, the radius
shouldn’t be chosen too large either, as the size of the simulation volume plays a
major role when it comes to computing time.

For the preset mass range as well as for the GIF N-body data the maximum
halo mass is 104 M, which corresponds to a virial radius (7299, see equation (2.45))
of nearly 3 x 1022m at zero redshift. The preselected simulation cylinder radius is
therefore set to 5 x 1022m. It can however be modified if a different mass range is
desired.

The size of the small cylinder, representing the line of sight, is preset to 10'"m. Fac-
tors that have to be taken in consideration when selecting a value for this quantity
are discussed in section 3.2.

The simulation volume then gets replenished with halos according to the chosen
mechanism. For this the code offers several options as stated in the following.

3.1.1 Halo generation applying the Press-Schechter mass func-
tion

The first step is to divide the simulation cylinder into subvolumes by interposing 30
lens planes evenly spread in redshift. This is done in accordance with the parameter
setting in the microlensing code by Zackrisson and Bergvall (2003) to be able to
employ the output of my program in their code. The number of lens planes can
however be modified if desired as it is a global parameter in the code.

Following Surpi et al., the length of the nth subcylinder is given by the correspond-
ing light travel distance, calculated by

c Zn 1
=g, / T+ 29" 3D

where g(z) is given by equation (2.5), ¢ denotes the speed of light and zyp = 0.

Each subvolume becomes assigned to the lens plane in which it ends, which means
that it adopts the values of the cosmological parameters valid for its lens plane
(Q(zn)a QA(zn) and pemp(zn) = Q(zn)pcrit(zn) = QMpcm't(l + zn)3)-

Utilising these, the program determines the respective critical mass scale M, (zy,)
defined in section 2.1. This quantity is needed to get an approximation for the
variance of the density field, 02(2,), as given in equation (2.38), which is crucial for
the halo mass function (2.42).

Depending on which option for the evaluation of the mass fraction clustered in
haloes is selected (see section 2.5), the code is now able to assess the total mass in
haloes - within the selected mass range - expected for the given subvolume.

In the next step, haloes are generated according to the mass function (2.42)
until their accumulated mass comes up to the expected total mass as estimated
above 5 * M,,;,, the minimum halo mass. This assignation provides for a nearly
even spread of accumulated masses around the expected total ones when using the
default parameters and thereby avoids a systematic over- or underfilling.

The discrepancy between the actual density and the expected matter density for
the specified redshift, pesp(2n), is stored as background density of the subvolume.
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Figure 3.2: Example of halo distribution inside a cylindric subvolume for 3 different
redshifts (at the top: z = 0, in the middle: z = 1, bottom: z = 4). The simulations
are carried out using the preset parameters, a halo mass fraction following the Press-
Schechter mass function (see section 2.5) and without subhalo generation. The line
of sight (= the cylinder axis) is illustrated by the yellow straight line and the darker
a halo the farther it is situated.
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For each halo a pair of cylindric coordinates based on the subvolume gets ran-
domly generated and assigned.

A graphic display of the outcome of such a subvolume routine with varying redshift
is shown in figure 3.2.

The evolution with redshift is striking, particularly when considering that the
simulations are based on a halo mass fraction following the mass function (see
section 2.5). This means that the visualised haloes in the upper panel comprise
roughly 90 percent of the total mass present in the given volume while the haloes
shown in the lower panel account for only around 10 percent (compare figure 2.6 ).

Thus in the lower panel there is additionally nearly 9 times as much mass dis-
tributed in a smooth background density as there is clustered in haloes.

Consequently the output of this process consists in 30 subvolumes, each filled with
haloes according to the mass function for the given redshifts, their coordinates based
on the subcylinder they belong to and potentially a background density.

Stringing these together in the correct order then produces the large simulation
cylinder.

3.1.2 Assembling the cylindric volume using N-body data

Alternatively to halo generation according to the Press-Schechter mass function,
the program provides the possibility to employ N-body data for the build-up of the
simulation volume.

The data implemented in my code are a selective version of the GIF project halo
catalogues that can be found at www.mpa-garching.mpg.de/GIF/.

It is composed of one file per available redshift, containing information about
mass and respective coordinates for each halo comprised in the comoving simulation
box at that time.

The basic idea of this routine is to construct the large simulation cylinder by cutting
subcylinders out of the N-body simulation boxes and stringing them together to
assemble the simulation cylinder (see figure 3.5).

The first step in this machinery is to determine which N-body files are needed. The
program requires the data for all available redshifts (z,5) up to at least the light
source redshift to be able to carry out the ensuing computations.

Thereafter the corresponding distances are calculated, analogue to equation
(3.1). These light travel distances equal the lengths of the respective subcylin-
der that will be cut out of the N-body simulation boxes. The subcylinder lengths
using all available redshifts and the preset parameters are plotted in figure 3.3.

As the N-body data is given for a comoving box of size 141 A~ Mpc, all coordinates
have to be corrected before use in the code. This conversion is done according to
following formula:

[,y,2] = B~ Mpc(1 + zns) "' [, Y, Zl @1 data (3.2)
The converted simulation box sizes are shown in figure 3.4.

It is apparent that the simulation box size doesn’t fall below the preset simulation
cylinder diameter of 1023m for any given redshift 2.

In case it is desired to modify the simulation cylinder radius, it has to be kept in
mind that the resulting diameter has to be not less than the box size of the highest
required redshift z,.
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Figure 3.3: Length of the nbth subcylinder which is assigned to redshift z,;. The

calculations are carried out according to equation (3.1) using the preset cosmological
parameters.
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Figure 3.4: Converted size of the nbth N-body simulation box which is assigned to

redshift z,,. The calculations are carried out according to equation (3.2) using the
preset cosmological parameters.
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When comparing figure 3.3 with figure 3.4 it becomes however clear that the box
size can be less than the needed subcylinder length for certain redshifts. For the
preset parameters this is the case for all redshifts up to z,p—29 = 4.68.

Thus when cutting the subcylinders out of their respective N-body simulation
cube, it has to be checked if they fit entirely. Otherwise the subcylinder is assembled
by repeating the cutting routine and stringing the parts together until the required
length is obtained.

The cutting routine works identical for all redshifts and their associated simulation
boxes.

First a random point in the (x,y,0)-plane is picked which complies with the
requirement that it has a minimum distance equal to the simulation cylinder radius
to the nearest edges of the cube. This point, (zs,¥s,0), is then adopted as start of
the simulation cylinder axis. Its endpoint is consequently (zs, ys, dns), if dnp < box
sizenp. Otherwise the endpoint is set to (s, Ys, Zmaz) and a dummy, d?;, is created
and set t0 dpp — Zmaz (figure 3.5 a).

Subsequently all halos within the simulation cylinder are selected and their co-
ordinates are converted into polar coordinates with respect to the cylinder.

In the case that d,; exceeds the size of the respective simulation box, the routine
is carried out once more, this time using d, as cylinder length. When converting
the halo coordinates, the z-coordinate becomes this time however 2pq10 + Zmae. This
simply implicates that the in this manner produced subcylinder gets merged with
the simulation subcylinder from the first step (figure 3.5 b).

After executing this routine for all given z,;, the simulation volume is finally
build up by adding the subvolumes in the right order (figure 3.5 c).

In accordance with the method based on the Press-Schechter mass function
the large simulation cylinder is subsequently apportioned by interposing a number
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Figure 3.5: Schematic diagram of the basic concept of simulation volume assembling
using the N-body data. See text for details.
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of lens planes (preset to 30), evenly spread in the redshift range up to the light
source redshift (compare section 3.1.1). Thereby subvolumes with lengths given
by equation (3.1) are generated and the halo coordinates are transferred to their
respective subcylinder (figure 3.5 d).

In a final step a background density is assigned to each subvolume, based on the
GIF data mass fraction fit (see section 2.5).

Thus both methods yield n subvolumes of length d,,, each filled with halos of certain
masses, assigned to coordinates with respect to the subvolume, and an adequate
background density.

Subsequently the process steps are the same regardless of which machinery was
chosen to produce the simulation volume.

If subhalo generation was selected, the code determines the mass fraction in sub-
structure for each halo according to equation (2.50). The expected mass in subhalos
is then stored and the parent halo mass gets reduced by the same amount.

Next the cut-off radii of all haloes, which define their spatial boundaries, are com-
puted. For all points, which lie outside a sphere of cut-off radius around the halo
coordinates, the density contribution of this halo is set to zero.

Following common practice, I adopt rago as cut-off radius (see equation (2.45)).

If no substructure production is demanded, the simulation volume contains now
all information necessary to accomplish the determination of the mass distribution
along the line of sight.

Otherwise the program checks which halos are in direct contact with the line of
sight. This means it selects those halos, whose coordinates have a maximum dis-
tance, equal to their cut-off radius and the small cylinder radius combined, to the
simulation cylinder axis.

To save computing time, substructure generation takes only place for these halos.

The subhalo production proceeds likewise for all relevant halos.

Subhalos are generated according to the average subhalo mass function (see
equation 2.48) until the cumulative mass in substructure is equal the above calcu-
lated expected mass in subhalos +5 * an%u the minimum substructure mass. This
is done in accordance with the method used when filling up the subvolumes with
the Monte-Carlo routine (compare with section 3.1.1) to avoid a constant under-run
or excess of the expected total mass in substructure.

Subsequently, every subhalo gets assigned to spherical coordinates following the
distribution given by equation (2.52). These coordinates are then transformed into
cartesian coordinates, with the parent halo coordinates as origin, the y-axis parallel
and the z-axis perpendicular to the simulation cylinder axis (see figure 3.6).

To be able to evaluate the contribution of a subhalo to the density inside the
small integration volume, its distance to the simulation cylinder axis, r,,s, and its
height inside its subvolume, hg,p, are required. These are calculated with help of
basic calculus as

— 2 2 2
Tsub = \/zsub + rparent —2x Zsub * Tparent + Tsub (3'3)

and
hsup = hparent + Ysub, (34)

where Z;yup, Ysup and zsyp are the cartesian coordinates of the subhalo as described
above, while 7psrent and hpgrent are polar coordinates of the parent halo with respect
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Figure 3.6: Schematic diagram of the different coordinate systems assigned to the
subhaloes inside their parent haloes, as explained in the text.

to its subvolume.
In a last step the cut-off radii for all subhalos are computed, again adopting 7209
and using equation (2.45).

After having accomplished this procedure for all halos of interest, the simulation
volume contains information, in form of mass, position and cut-off radius, about all
halos and, if needed, their respective subhalos for all subvolumes.

3.2 Numerical halo integration

After the assembling of the large simulation cylinder volume (compare section 3.1),
the program is now able to determine the mass distribution along the line of sight
by computing the mass density for each small subcylinder within its respective
simulation subvolume.

That mass density emerges from the halo contribution and potentially a subhalo
component.

Allthough there are two different functions implemented in the code, the ma-
chineries to determine the density in halos and in subhalos are the same. The
distinction is simply due to a discrepancy in storage format.

In case of substructure the program processes halos and subhalos separately and
superposes the corresponding densities afterwards.

The technique applied in the code works in an analogous manner for all objects in
all subvolumes.

In a first step it is checked if the current (sub)halo actually encounters the small
cylinder. To be assessed relevant, an object needs to satisfy two conditions: Its
coordinates are not allowed to correspond to a distance to the simulation cylinder
axis larger than their cut-off radius and the small cylinder radius combined and it
mustn’t cut across the lens plane confining its subvolume towards lower redshift.
The latter has the purpose of avoiding a constant excess by taking haloes, that
don’t lie completely inside their respective subvolume, into account.
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Figure 3.7: Schematic diagram of the basic concept of simulation volume assembling
using the N-body data.

If this is the case, the code evaluates the (sub)halo’s share of mass that lies
within the small cylinder (figure 3.7 a).

Thereto it subdivides that part of the small cylinder, that lies within the ob-
ject, into small subvolumes. The number of small subvolumes (n;) is a hardcoded
parameter in the code and set to 100. It can however easily be changed if desired.
In doing so, it has to be kept in mind that by lowering this number, the length of
each subvolume increases, whereby the accuracy of the method is lowered. As the
savings of computing time are minor, it is advised against choosing this quantity
too low. Furthermore it has to meet the condition of being an even number, due to
a property of the coding as discussed below.

The second factor that has an effect on the performance of the routine is the
integration cylinder radius itself. It has to be small in proportion to the size of
the object, which is specified by its cut-off radius. For the preset parameters, the
lowest possible mass is that of a minimal subhalo, 5 x 108 M, which results in a
least cut-off radius of around 5.1 x 102°m at zero redshift and 6.9 x 10'°m at redshift
10 (compare equation 2.45). As mentioned in section 3.1, the small cylinder radius
is preset to 10"m. This ensures a sufficient precision over a wide range of redshifts.

The total length of the relevant small cylinder part results from Pythagoras’ theorem

(figure 3.7 b) as
l'rel.cyl. =2 X \/ 7‘%00 — 7’2 (3.5)

Thanks to the spherical symmetry of the NFW density profile (see section 2.2),
there are throughout two small subvolumes which are identical, if the number of
small subvolumes is chosen even (figure 3.7 ¢). This fact allows to cut down on the
calculational complexity. Only the subvolumes on one side of the symmetry axis are
evaluated regarding their mass content. The total mass share of the object within
the small cylinder is then given as twice the accumulated mass of these subvolumes.
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The mass evaluation proceeds likewise for all integration subvolumes.

First of all, the code determines the density radius, r,, which assigns the appro-
priate density to the subvolume. For this purpose the centre of the subvolume is
opted. The density radius of subvolume number n follows also as (figure 3.7 d)

rp(n) = \/7'2 + (%lrel.cyl.)2 (36)

where n € [1, %]

Subsequently, the density, p(7,), is computed according to equation (2.44). The
respective mass is simply this density times the subvolume, which is determined by
its radius (= integration cylinder radius) and its lenght (= l”;—“”’)

Thus the program is able to assess, separately for each large simulation subcylinder,
all mass within the respective integration cylinder due to (sub)halos.

If necessary, these mass densities get amended by the appropriate background
densities (compare section 2.5).

In a last step the code calculates the ratio of actual mass density to expected mass

p(n)

density, o (E)’ for each subcylinder and outputs it into a file.
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Chapter 4

Results

As mentioned above, the program outputs information on the matter density ratio,

% (the actual over the expected matter density), for each lens plane along

the line of sight.

The average matter density ratio, < pL >, for a line of sight is weighted by the

exp

expected masses of the individual subvolumes

T Mot

< n ) (4.1)
pezp anzl MeC”P (n)
where Mc.p(n) is given by
M,2p(n) = 27(radius)?dnQ(2n ) perit (2n) (4.2)

and n; is the number of lens planes inserted in the simulation volume.

According to the Press & Gunn approximation, which is conventionally adopted
when calculating the probability of microlensing for a cosmologically distant source,
the lensing objects are uniformly and randomly distributed in the intervening space
with a constant comoving density. This is equipollent to < ﬁ >=1 for all lines
of sight.

Thus when plotting the cumulative fraction of the lines of sight with an aver-
age matter density ratio up to a certain value (cumulative distribution function,
hereafter CDF), the Press & Gunn assumption predicts a step function at 1.

Using the output of my program, I tested this supposition for varying configurations.
If not stated otherwise, the data for each setting consists of 1000 simulations, carried
out applying the preset parameters.

4.1 Dependency on redshift

Intuitively the spread of the density distribution should be larger for low-redshift
light sources, as the scatter in the number of dark halos along the line of sight
is expected to be far in excess of the one for a light source at high cosmological
distance.

This property can in fact be seen in all simulations for consistent settings (com-
pare figure 4.1).
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Figure 4.1: CDF of the average matter density ratio, < ﬁ >, along the line of
sight to a light source at z = 0.5, z = 1.5 and z = 5.0 using the Press-Schechter
mass function for halo production (no substructure generation).
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Figure 4.2: Zoom in on the CDF of the average matter density ratio, < pL >, along
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the line of sight to a light source at z = 0.5 and at z = 1.5 using the Press-Schechter
mass function for halo production with and without generation of substructure.
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4.2 Dependency on substructure

The effect of substructure on the spread of the average matter density plays a
minor role compared to the dependency on redshift (see figure 4.2). The existence
of subhalos seems to smooth the matter density slightly, in agreement with naive
expectations, since it causes a partial redistribution of the parent halo mass which
for a NFW profile is mostly concentrated in the centre (see section 2.2 and figure
2.4).

For increasing redshifts this effect seems to become somewhat more important.
This is in accordance with the fact that the average subhalo mass fraction for
a constant parent mass is rising with redshift (see figure 2.3). For high redshifts
(2 ~ 5) however, there can’t be attached any more importance to this as the absolute
effect of mass clustering in subhalos becomes negligible compared to the smoothing
effect of increased redshift.

4.3 Dependency on clustering

To analyse the impact clustering has on the spread in average matter density, I
compare simulations using the N-body data directly with simulations using the
Press-Schechter mass function while following the GIF data mass fraction (see sec-
tion 2.5) for concordant parameter settings.

Assuming that the N-body mass function and the Press-Schechter mass function
are nearly alike, the only difference between the two scenarios is that the haloes
from the GIF data are spatially clustered while the haloes generated by using the
Press-Schechter mass function are randomly distributed.

As shown in figure 4.3 the provision for halo-halo clustering doesn’t play an
important role for the average matter density distribution. It causes a minor ampli-
fication of the dispersion observed for randomly distributed haloes at the respective
redshift. The importance of this effect decreases with increasing redshift.

4.4 Dependency on mass fraction

The question which fraction of the total expected mass along the line of sight
actually is clustered in halos within the given mass range has already been discussed
in section 2.5.

As there are papers in which computations are carried out assuming all matter
in the universe to be clustered in galaxy-sized objects, it is interesting to look into
the outcomes of this scenario as well.

There is yet another reason why these data are significant. When restricting
the halo mass range and following the mass fraction predicted by the mass function
(Press-Schechter or GIF N-body), all mass in haloes outside this mass range becomes
smoothly distributed as a background density. Thus for the preset parameters at
redshifts > 4 less than 10 percent of the total mass gets clustered in halos (compare
figure 2.6). This effect produces an increased density equalisation with redshift.

To abandon the concept of having a background density and thereby forcing all
mass to cluster within the mass range causes however an opposite impact on the
average matter density distribution. Analysing the findings of simulations with-
out background density can therefore help to assess an upper limit on the density
dispersion with redshift.

Figure 4.4 illustrates the important role the mass fraction variable plays. As
anticipated, the spread intensifies for a larger mass fraction clustered in halos at
fixed redshift.
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Scenario z = 0.5 z=1.5
median | mean | median | mean

Press-Schechter 0.8135 | 1.0014 | 0.9241 | 0.9912
(Press-Schechter mass fraction)
Press-Schechter + substructure 0.8250 | 1.0088 | 0.9597 | 1.0297
(Press-Schechter mass fraction)

Press-Schechter 0.8577 | 0.9989 | 0.9349 | 0.9944
(N-body mass fraction)

N-body 0.8106 | 1.0322 | 0.9321 | 1.0170
Press-Schechter 0.7925 | 1.0031 | 0.8903 | 0.9772

(mass fraction = 1)

Table 4.1: The median and mean values of the average matter density, < p/pezp >,
for different scenarios at redshifts z = 0.5 and z = 1.5. Each set of data consists of
1000 simulations using the preset parameters.

Table 4.1 shows an overview of the median and mean values of the average matter
density, < p/pezp >, computed for the configurations used to create figures 4.1 -
4.4.

As expected for a large sample, the mean value is very close to unity for all sce-
narios. The median value however exhibits a negative-only variation. This property
is already noticeable in figures 4.1 - 4.4. At least about 60 percent of the simulations
for any chosen scenario produce an average matter density lower than the expected
one.

Just like the spread in the average matter density distribution, its median value
displays a strong dependency on redshift.

The existence of substructure produces a slight approach of the median to the
expected value of unity. This effect is however negligible when comparing with the
variation due to redshift.

In contrast to the performance of the spread in matter density distribution due
to clustering, the dependency of the median on clustering is only and highly distinct
for light sources at low redshift. For z = 1.5, the median values are already nearly
identical.

The magnitude of the mass fraction affects the median value in the same manner
as it affects the distribution spread (see section 4.4). The importance of this effect
is however smaller.
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Chapter 5

Conclusions

Using Monte-Carlo techniques, I have developed a code that is able to simulate
diverse models of universes filled with large-scale structure and with the help of
those to determine the integrated matter distribution along the line of sight to a
pointlike light source at arbitrary cosmological distance.

I compared the results from my code to the predictions of the Press-Gunn approx-
imation which is conventionally adopted when carrying out microlensing calcula-
tions. According to the Press-Gunn approximation lensing objects are uniformly
and randomly distributed throughout the universe.

As anticipated, the discrepancy between the assumption and the simulations is
especially at low-redshift distinct.

The distribution of the average matter density evaluated by the code shows a
broad spread as well as a negative-only variation of its expected median.

While the effects of halo substructure can overall be neglected at any redshift,
halo-halo clustering shows a substantial impact on the matter distribution along
the line of sight to sources at more modest distance (z < 1).

Another factor causing deviations is the magnitude of the mass fraction clustered
in halos. This property suggests a mass resolution problem. The spread in the
average matter density distribution is heavily dependent on the extend of the mass
range within which halos are allowed to cluster. As the used Press-Schechter parent
halo mass function by Sheth & Tormen has a lower resolution limit of ~ 10! M,
(Reed et al., 2003), a more powerful mass function formalism is needed in order to
assess data unaffected of the smoothing feature of a background density.

Since the results indicate a severe deviation from the Press-Gunn approximation
even when allowing the existence of a balancing background density, more realistic
matter distributions along the line of sight have to be adopted in microlensing stud-
ies and their impact on current constraints on the mass function, velocity dispersion
and cosmological density of the microlenses has to be evaluated.

To address this potentially serious problem, the output of the code described in
this paper will be implemented into the microlensing code developed by Zackrisson
and Bergvall (2003).

In addition, the strong redshift dependency of the spread in the mean density dis-
tribution along a line of sight to light sources at cosmological distances opens the
exciting possibility to test the notion of microlensing-induced long-term variabil-
ity in quasars by checking quasar samples on decreasing variability dispersion with
increasing redshift .
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Appendix A

The code

function mat_dist;

% generates a simulation volume and calculates the matter
% density along the line of sight to a light source at z_QSO

Do sk sk sk s ok sk sk o ok sk ok o ok sk ok o ok sk ok o ok sk ok ok ok sk ok ok ok 9
% hardcoded parameters %
Do sk sk sk o ok sk ok o ok sk ok o ok sk ok o ok sk ok o ok skok ok ok ok ok ok ok 9

c = 3.e8; % speed of light [m/s]
G = 6.67259e—11; % grav. constant [m"3/kg/s"2]
Pc = 3.0857¢l6; % Pc in m
MPc = 3.0857e22; % MPc in m
M_sun = 1.9899€30; % solar mass [kg]
theta27 = 1.0104; % T(CMB)=theta27%2.7K
nr_of_lens_planes = 30; % number of lens planes
radius = 5e22; % simulation cylinder radius
radius_small = 1el7; % radius of the small cylinder
bin_steps = 80; % nr of steps in massinterval
nr_of_small_volumes = 100; % nr of small volumes in a (sub)halo
% when integrating
ipsi = 1; % initial power spectrum index
P = 0.3; % halo mass function fitting parameter
A = 0.3222; % halo mass function fitting parameter
q = 0.707; % halo mass function fitting parameter
n_eff = —2.15; % effective slope of the CDM power spectrum
beta = 0.13; % subhalo mass function fitting parameter
rep = 1000; % number of simulations
show_plot = 0; % boolean
% 1 => subvolume plot
plot_vol = 1; % index of subvolume cylinder to plot
show_sub_plot = 0; % boolean

Do sk sk s sk sk sk s ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok T
% variables %

% 3k 3k 3k >k >k >k >k >k %k >k %k >k %k %k %k %k %k %k %k %k %k %k %k %k k k k k *k %

% input parameters

%

1 => halo & subhalo plot

% outfile : file which will contain the output data
% z-QSO : redshift of the light source
% lambda : cosmological constant today
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%
%
%
%
%
%o
%
%
%
%
%
%o
%
%
%
%
%
%
%
%
%o

%
%
%
%

%
%
%
%
%
%
%o

%
%
%
%

%
%
%o
%
%
%
%
%
%o
%o

%
%
%
%
%
%

omega_b
omega_c
hubble
M _min

M _max
n_body

mass_in_halos

substruc

M_sub_min
M_sub_max

main program
M._int

z_nb (nb)
z(n)

de(n)
rho_critical
rho_mass(n)
v(n)

M_c(n)

delta_c_z (n)

mass(n)
bg_density (n)
fmax(n)
mass_sub (n)
mass_ran(n, 1)
h(n,1)

r(n,1)
phi(n, 1)
dc_nb(nb)
density_nb (nb)
mass_nb (nb, 1)
zeta (nb,1)
rho(nb,1)
phi_nb(nb,1)
total_length_ nb(nb)
total_length (n)
M2M_c_s(n,1)

mass_substr (n,1)
cut_off(n,1)
sub_halo(n,1)

: minimum subhalo mass
: maximum subhalo mass

omega in baryons today
omega in CDM today
Hubble constant [km/MPc/s]

: minimum halo mass [M_sun]
: maximum halo mass [M_sun]

boolean

0 => create halos applying Press—Schechter mass
1 => use GIF-project halo catalogues

=> all mass clustered in halos

1 => halos outside the mass interval contribute
background density (following the mass function)
2 => halos outside the mass interval contribute
background density (following the mass function
by a factor of 2)
3 => halos outside
background density
boolean

0 => no substructure
1 => create subhalos

the mass interval contribute
(following the GIF data fit)

in halos

[M_sun]
[M_sun|]

logarithmically even spread masses within given
range (length(M_int)=bin_steps) [kg]

redshift of the nbth n—body simulation volume
redshift of the nth lens plane
length of the nth subvolume cylinder
critical density of the universe
expected density for the nth subvolume [kg/m"3]
subvolume belonging to the nth lens plane [m"3]
characteristic mass scale used in the halo mass
function for the nth subvolume [kg]

delta_c(z), critical value of the
which is required for collapse
expected mass in halos in the nth subvolume [kg]
background density in the nth subvolume [kg/m"3]

[m]

: maximum of the halo mass function at z(n)

mass in halos in the nth subvolume [M_sun]

funct .

to a

to a

adjusted

to a

mass

initial overdensity

mass of the Ilth halo in the nth subvolume [M_sun]

height of the 1th halo in the nth subvolume [m]
radius of the lth halo in the nth subvolume [m]
angle of the lth halo in nth the subvolume [rad]
length of the nbth subvolume cylinder [m]

background density in the nbth subvolume [kg/m"3]
mass of the lth halo in the nbth subvolume [M_sun]

height of the lth halo in the nbth subvolume [m]
radius of the lth halo in the nbth subvolume [m]

angle of the lth halo in the nbth subvolume [rad]

total lenght of the sim.
total length of the sim.
mass ratio of the 1lth halo
the characteristic non—linear mass
mass in substructure of Ith halo
cut—off radius of the 1lth halo
boolean

cylinder until z_nb(nb—1) [m]
cylinder until z(n—1) [m]
in the nth subvolume to

in nth subvolume
in the nth subvolume

0 => halo not relevant for substructure generation

1 => halo contains relevant substructure
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%
%
%
%
%
%o
%
%
%
%
%
%o
%
%
%
%
%
%o
%
%
%o
%
%
%

%
%

%
%
%

%

%

mass_ran_sub(n,m,1) : mass of the (1-1)th subhalo in the mth relevant halo
in the nth subvolume

mass_sub_struc : mass in subhalos
conc_par : concentration parameter
x_sub(n,m,s) : x—coordinate of the (s—1)th subhalo in themth
relevant halo in the nth subvolume
y-sub(n,m,s) : y—coordinate of the (s—1)th subhalo in the mth
relevant halo in the nth subvolume
z_sub(n,m,s) : z—coordinate of the (s—1)th subhalo in the mth
relevant halo in the nth subvolume
r_sub(n,m,s) : radius of the (s—1)th subhalo in mth relevant halo
in nth subvolume (polar coordinates)
cut_off_sub(n,m,s) : cut—off radius of the (s—1)th subhalo in the mth
relevant halo in the nth subvolume
mass_small_cyl_in_sub(n) : mass in substructure inside a small cylinder
through the nth subvolume
mass_small_cyl(n) : mass in halos inside a small cylinder
through the nth subvolume
int_cyl_vol(n) : volume of a small cylinder through the nth
subvolume
density_small_cyl(n) : density of a small cylinder through the nth
subvolume
dens_quot(n) : density quotient of a small cylinder through

the nth subvolume

sigma_d2 : square variance of the density field at epoch z in
linear perturbation theory

s s ko sk ok ok ok ok ok ok ok sk ok kR ko ok ok kR T
main program %
s s ks sk ok ok sk ok ok ok sk ok ok sk ok ok ok kR ko k ok T

get input parameters from wuser

[outfile ,z_.QSO,lambda,omega_b,omega_c,hubble ,M_min,M max,n_body,...

mass_in_halos,substruc,M_sub_min,M_sub_max] = input_parameters;

omega_m = omega_b+omega_c;

%

%

convert masses to kg

M_min = M_min*M_sun;

M _max

M_max*M _sun ;

M_sub_min = M_sub_min*xM_sun;
M_sub_max = M_sub_max*M_sun;

M_int = logspace (logl0(M._min),logl0(Mmax), bin_steps);

z.nb = [0.06 0.13 0.20 0.27 0.35 0.42 0.52 0.62 0.72 0.82 0.93 1.05 1.18 ...

Z

1.31 1.46 1.61 1.77 1.94 2.12 2.32 2.52 2.74 2.97 3.21 3.47 3.75 ...
4.04 4.35 4.68 5.03 5.41 5.80 6.22 6.67 7.14 7.65 8.18 8.75 9.35 ...
9.99 10.66 11.28];

= zeros (1,nr_of_lens_planes);

dc = zeros(1,nr_of_lens_planes);
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rho_mass = zeros (1,nr_of_lens_planes);
v = zeros (1,nr_of_lens_planes);

% calculate the redshifts of the lens planes

X
for n = 1l:nr_of_lens_planes

z(n) = n * (zQSO / (nr_of_lens_planes + 1));
end

% calculate relevant cosmological distances
S

dc = calc_distances(z,omega_m,lambda,c,hubble ,MPc, nr_of_lens_planes);

% calculate the density given by the used cosmology for each lens plane

G0 e e

rho_critical = (3%(1000%hubble /MPc)"2)/(8*pi*G);

omega.m_z = omega_m.*(14+z)."3./(lambda+(1—-lambda—omega_m).*(1+z)."2+4...
omega_m.*(14+z)."3);

lambda_z = lambda./(lambda+(1—lambda—omega.m).*(1+2z)."2+omega_m.*(1+z)."3);

rho_critical_z = rho_critical.*(lambda+(1—lambda—omega_m).*(14+2z)."24...
omega_m.*(1+z)."3);

rho_mass = omega_m z.*xrho_critical_z;

% generate subvolumes
T

v = generate_subvolume (dc,radius);

% calculate the critical value of the initial overdemnsity which is required
% for spherical collapse at z
for n = 1:nr_of_lens_planes

delta_c_z(n) = 0.15%(12xpi)~(2/3)*(omega_m_z(n))"0.0055;

end

z_.eq = 2.50%10"4xomega_m#*(hubble /100)"2%(theta27)"(—4);
% redshift of matter—radiation equality

k_eq = 7.46%10"(—2)*omega_m+*(hubble /100)"2*(theta27)"(—2)/MPc;

bl = 0.313%(omega_mx*(hubble /100)"2)"(—0.419)*(1+(0.607*(omega_m=+(hubble /...
100)°2)°0.674));

b2 = 0.238+(omega_mx*(hubble /100)"2)"0.223;

z.d = 1291%((omega_m=(hubble /100)°2)"0.251)/(1+0.659%(omega_m=*(hubble /...
100)°2)70.828)x(1+blx(omega_b*(hubble /100)"2)"b2);

% redshift at which the baryons are released from the compton drag of the

%photons

R_eq = 31.5%omega_b*(hubble /100)"2+theta27"(—4)*(z_eq/10°3)"(—1);
R.d = 31.5%xomega_b*(hubble/100)"2%theta27 " (—4)*(z_d/1073)"(—-1);

s = 2/(3xk-eq)*sart (6/R-eq)xlog ((sqrt(1+R-d)+sqrt (R-d+R-eq))/(1+sqrt (R-eq)));
% sound horizon at drag epoch

k_silk = 1.6%(omega_b*(hubble/100)"2)"0.52%(omega_.mx*(hubble /100)°2)"0.73x*...
(14(10.4*omega_mx*(hubble /100)"2)"(—0.95)) /MPc;
% silk damping scale

al = (46.9%*omega_mx*(hubble /100)"2)"0.67+(1+(32.1%omega_m=(hubble /100)"2)...
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“(—0.532));

a2 = (12.0%*omega_mx*(hubble /100)"2)"0.424%(1+4(45.0%omega_m*(hubble /100)"2)...
“(—-0.582));

alpha_c¢ = al”“(—omega_b/omega_m)*a2"(—omega_b/omega.m) " 3;

% CDM suppression

bl 0.944% (14 (458 xomega_m#*(hubble /100)"2)"(—0.708))"(—1);
b2 = (0.395%omega mx(hubble /100)°2)"(—0.0266);

beta_c = (1+bl*((omega_c/omegam)”"b2—-1))"(—1);

% shift in CDM log

y-d = (1+z_eq)/(14+2z-d);
Gfunc = y_d*(—6xsqrt(1+y-d)+(2+3xy_d)*log ((sqrt(1+y-d)+1)/(sqrt(l+y-d)—1)));

alpha b = 2.07xk_eq*s*(1+R.d)"(—3/4)*Gfunc;
% baryon suppression

beta_b = 0.5+ omega_b/omega_m+(3—2%omega_b/omega_m)*sqrt ((17.2%omegam *...
(hubble /100)"2)"2+1);
% baryon envelope shift

beta_node = 8.41x%(omega_mx*(hubble /100)"2)"0.435;
% node shift parameter

for n = 1:nr_of_lens_planes
D.1(n) = (1+z-eq)*(1+z(n))"(—1)*5*omega_.m z(n)/2+(omegam z(n) " (4/7)—...
lambda_z (n)+(1+omega.m_z (n)/2)*(1+lambda_z(n)/70)) " (—1);
end
D_10 = (14 z_-eq)*5*omega_m /2% (omega_m"(4/7)—lambda+(1+omega_m/2)*(1+lambda /...
70))"(=1);

% growth function

m = ipsi—1;

if lambda == 0

delta_h = 1.95%10"(—5)*omega_m"(—0.35—0.19%log (omega_.m)—0.17*m)*exp(—m—...

0.14+*m"2);
else
delta_h = 1.94%10"(—5)*omega_m"(—0.785—0.05%log (omega_m))*exp(—0.95*xm—...
0.169*m"2);
end

% amplitude of perturbations on the horizon scale today

% calculate the characteristic mass scale for each lens plane
G e e e e e e
for n = 1l:nr_of_lens_planes
got_-M_c = 0;
M(n) = 5e42;
while got_-M_c ==
sigma_d2 = quadl(’sigma_integral’,0,1e—9,[],[],M(n),omegam,...
omega._c,omega_b,hubble,c,ipsi,rho_critical_z(n),D.1(n),D_10,...
z_eq,k_eq,k_silk,s,alpha_c,beta_c,alpha_b,beta_b,beta_node,...
delta_h);
if (sqrt(sigma_d2)/delta_c_.z(n)) < 0.93
M(n) = 0.2%M(n);
elseif (sqrt(sigma_d2)/delta_c_z(n)) > 1.07
M(n) = 1.8+«M(n);
elseif (sqrt(sigma_d2)/delta_c_z(n)) < 0.98
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M(n
elseif

M(n
elseif

= 0.5%M(n);
sqrt (sigma_d2)/delta_c_z(n)) > 1.02
= 1.5%xM(n);

=

= 0.95*M(n);

)

g q

(sqrt(sigma_d2)/delta_c_z(n)) < 0.996
)

(sqrt (sigma_d2)/delta_c_z(n)) > 1.004
)

(

)

(

)

elsei

=

1.05%M(n);
sqrt (sigma_d2)/delta_c_z(n)) < 0.998
0.99+M(n);
sqrt (sigma_d2)/delta_c_z(n)) > 1.002
1.01%M(n);

f
n
elseif

=

n

(
(n
(
(

elseif
M(n

else
got_M_c = 1;

end
end
Mc(n) = M(n);
end

for i = 1:rep
i
rand (’state’,sum(100*clock));

mass = zeros (1,nr_of_lens_planes);

bg_density = zeros(1,nr_of_lens_planes);

fmax = zeros (1,nr_of_lens_planes);

mass_sub = zeros (1,nr_of_lens_planes);
mass_small_cyl_in_sub = zeros(1,nr_of_lens_planes);
mass_small_cyl = zeros(1l,nr_of_lens_planes);
int_cyl_vol = zeros(1,nr_of_lens_planes);
density_small_cyl = zeros(1l,nr_of_lens_planes);
dens_quot= zeros (1,nr_of_lens_planes);

mass_ran = zeros(nr_of_lens_planes,3000);

h = zeros(nr_of_lens_planes,3000);

r = zeros(nr_of_lens_planes,3000);

phi = zeros(nr_of_lens_planes,3000);

cut_off = zeros(nr_of_lens_planes,3000);
sub_halo = zeros(nr_of_lens_planes,3000);

if n_.body == 0
% halo production via Press—Schechter mass function chosen

for n = l:nr_of_lens_planes

% calculate mass in dark halos in each subvolume

X
if mass_in_halos ==
mass(n) = mass_in_interval (bin_steps,M.c(n),v(n),n,M_int,...
rho_critical_z (n),M.min,Mmax,c,p,A,q,delta_c_z(n),...
n_eff ,MPc);
if mass(n) > (rho_mass(n)*v(n))
mass(n) = rho_mass(n)*v(n)/M_sun;
bg_density (n) = 0;
else
bg_density (n) = (rho_mass(n)*v(n)—mass(n))/v(n);
mass(n) = mass(n)/M_sun;
end
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elseif mass_in_halos ==
mass(n) = mass_in_interval_corr (bin_steps,Mc(n),v(n),n,...
M_int,rho_critical_z (n),M_min,Mmax,c,p,A,q,...
delta_c_z(n), n_eff ,MPc);
bg_density (n) = (rho_mass(n)*v(n)—mass(n))/v(n);

mass(n) = mass(n)/M_sun;

elseif mass_in_halos == 3
mass(n) = mass_in_interval_gif(z(n),rho_mass(n),v(n));
bg_density (n) = (rho_mass(n)*v(n)—mass(n))/v(n);
mass(n) = mass(n)/M_sun;

else
mass(n) = rho_mass(n)*v(n)/M_sun;

end

% calculate maximum of the mass distribution

3

fmax(n) = getmax_mass_dist(M.c(n),n,M_int,rho_critical_z(n),...
M_min,M.max,c,p,A,q,delta_c_z(n),n_eff MPc);

% set initial dark halo mass and number in subvolume zero

Y
mass_sub(n) = 0;
1 = 0;
% ... and fill it up
U
while mass_sub(n) < (mass(n)—5+*M_min/M_sun)
1 =1+ 1;
mass_ran(n,l) = halomass(M_sun,M_c(n),fmax,n,M_int, ...
rho_critical_z (n),M.min,Mmax,c,p,A,q,delta_c_z(n),...
n_eff MPc);
mass_sub(n) = mass_sub(n) + mass_ran(n,1);
if mass_sub(n) > (mass(n)+5«*M_min/M_sun)
mass_sub(n) = mass_sub(n) — mass_ran(n,1);
l1=1-1;
else
% generate coordinates for each dark halo
b P
[h(n,1),r(n,1),phi(n,1)] = generate_coordinates_rand...
(de,n,radius);
end
end
end
else

% use the n—body simulation data

% calculate index of the maximum relevant n—body redshift

S
found_z = 0;
max_z = 0;
while found.z ==

max_z = max_z + 1;

if z_nb(max.z) >= z(nr_of_lens_planes)

found.z = 1;

end

end

43



% calculate subvolume lengths coresponding to the relevant n_body
% redshifts

S PP
dc_.nb = calc_distances(z_nb,omega_m,lambda,c, hubble ,MPc, max._z);
mass_.nb = zeros(max.z,10000);

phi_nb = zeros(max_z,10000);
rho = zeros(max.z,10000);
zeta = zeros(max_z,10000);
mass = zeros (1,max._z);
max_length = zeros (1,max_z);
density_nb = zeros (1,max_z);
X = zeros (1,max._z);

Y = zeros(1,max.z);

Z_.1 = zeros(1,max._z);

Z_u = zeros(1,max.z);

dc_nb_dum = dc_nb;

% cut subvolumes out of the n—body simulation cubes
Y
for nb = l:max.z
C = zeros (89000,4);
mass_prov = zeros (10000,4);
indat = ['nb’,num2str(z_nb(nb),’%4.2f”),". txt.’];
C = load (indat );
mass(nb) = 0;
for i = 1:size(C,1)
if C(i,1) "=10
mass(nb) = mass(nb)+(M_sunx10"C(i,1));
end
end

% converte the coordinates into not comoving and [m]

Y P
C(:,2:4) = C(:,2:4).xMPc./(hubble/100%(14+z_nb(nb)));
max_length(nb) = 141%MPc/(hubble /100%(14+z_nb(nb)));

density_nb(nb) = mass(nb)/(max_length(nb))"3;

if dc_nb_dum(nb) <= max_length (nb)
% simulation subcylinder fits into the respective nb—cube

rand_num = rand (1);
X(nb) = rand_numx*(max_length(nb)—2+radius)+radius;
rand_num = rand (1);
Y(nb) = rand num#*(max_length(nb)—2%radius)+radius;

Z_1(nb) = 0;
Z_u(nb) = Z_1(nb) + dc_nb_dum (nb);
k = 1;

for m = 1:size (C,1)
if C(m,2) > (X(nb)—radius)
if C(m,2) <= (X(nb)+radius)
if C(m,3) > (Y(nb)—radius)
if C(m,3) <= (Y(nb)+radius)
if C(m,4) <= Z_u(nb)
mass_prov(k,1:4) = C(m,1:4);
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k = k+1;
end
end
end
end
end
end
mass_prov (:,2) = mass_prov(:,2)—X(nb);
mass_prov (:,3) = mass_prov(:,3)=Y(nb);

[mass_prov (:,2), mass_prov (:,3), mass_prov(:,4)] = cart2pol ...
(mass_prov (:,2), mass_prov (:,3), mass_prov (:,4));
1 = 1;
i =1;
while mass_prov(i,1) "= 0
if mass_prov(i,3) > radius
mass_prov(i,1:4) = [0 0 0 0];
else
mass_nb(nb,1) = 10" mass_prov(i,1);

phi_nb(nb,l) = mass_prov(i,2);
rho(nb,1) = mass_prov(i,3);

zeta(nb,1) = mass_prov(i,4);
1 = 141;
end
i=i41;
end
else

% simulation subcylinder longer than its nb—cube

dc_.nb_dum(nb) = dc.nb_dum (nb)—max_length(nb);

rand_num = rand (1);

X(nb) = rand_numx*(max_length(nb)—2+radius)+radius;
rand_num = rand (1);

Y(nb) = rand_num=#(max_length(nb)—2+radius)+radius;
Z_1(nb) = 0;

Z_u(nb) = max_length(nb);

k = 1;

for m = 1:size (C,1)
if C(m,2) > (X(nb)—radius)
if C(m,2) <= (X(nb)+radius)
if C(m,3) > (Y(nb)—radius)
if C(m,3) <= (Y(nb)+radius)
if C(m,4) <= Z_u(nb)
mass_prov(k,1:4) = C(m,1:4);
k = k+1;
end
end
end
end
end
end
mass_prov (:,2) mass_prov (:,2)—X(nb);
mass_prov (:,3) = mass_prov (:,3)=Y(nb);
I = k;
if dc.nb_dum(nb) <= max_length (nb)
% simulation subcylinder fits into the respective nb—cube

rand_num = rand (1);
X(nb) = rand_num=#(max_length (nb)—2*radius)+radius;
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rand_num = rand (1);
Y(nb) = rand_num=#(max_length (nb)—2*radius)+radius;
Z_1(nb) = 0;
Z_u(nb) = dc.nb_dum (nb);
for m = 1:size (C,1)
if C(m,2) > (X(nb)—radius)
if C(m,2) <= (X(nb)+radius)
if C(m,3) > (Y(nb)—radius)
if C(m,3) <= (Y(nb)+radius)
if C(m,4) <= Z_u(nb)
mass_prov(1,1:3) = ( m,1:
mass_prov(l,4) = C(m,4)+.
max_length(nb);
1 = 141;

)

end
end
end
end
end

end

mass_prov(k:(1—-1),2) = mass_prov(k:(1-1),2)—X(nb);
mass_prov(k:(1-1),3) = mass_prov(k:(1-1),3)-Y(nb);

else
% simulation subcylinder longer than its nb—cube

dc.nb_dum(nb) = dc.nb_dum (nb)—max_length(nb);
rand_num = rand (1);
X(nb) = rand_num=#(max_length (nb)—2+radius)+radius;
rand_num = rand (1);
Y(nb) = rand num#*(max_length (nb)—2+«radius)+radius;
Z_1(nb) = 0;
Z_u(nb) = max_length(nb);
for m = 1:size(C,1)
if C(m,2) > (X(nb)—radius)
if C(m,2) <= (X(nb)+radius)
if C(m,3) > (Y(nb)—radius)
if C(m,3) <= (Y(nb)+radius)
if C(m,4) <= Z_u(nb)
mass_prov(1,1:3) = C(m,1:3);
mass_prov(1,4) = C(m,4)+...
max_length(nb);
1 = 141;
end
end
end
end
end
end
mass_prov(k:(1-1),2) = mass_prov(k:(1-1),2)—X(nb);
mass_prov (k:(1-1),3) mass_prov (k:(1-1),3)=Y(nb);
o=1;
if dc.nb_dum (nb) <= max_length (nb)
% simulation subcylinder fits into its nb—cube

rand_num = rand (1);
X(nb) = rand_num*(max_length(nb)—2+radius)+radius;
rand_num = rand(1);

Y(nb) = rand_num*(max_length(nb)—2+radius)+radius;
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7Z_1(nb) = 0;

Z_u(nb) = dc.nb_dum(nb);

for m = 1:size(C,1)

if C(m,2) > (X(nb)—radius)
if C(m,2) <= (X(nb)+radius)
if C(m,3) > (Y(nb)-radius)
if C(m,3) <= (Y(nb)+radius)
if C(m,4) <= Z_u(nb)

mass_prov(o,1:3) = C(m,1:3);

mass_prov(o0,4) = C(m

max_length(nb);
o = o+1;
end
end
end
end
end
end
mass_prov (l:(o—1),

A)+2%. ..

) = mass_prov(l:(0—1),2)—X(nb);

2
mass_prov(1l:(o—1),3) = mass_prov(l:(0—1),3)—Y(nb);

end
end

% converte the cartesian halo coordinates into polar
% coordinates respective to the simulation cylinder

axis
[mass_prov (:,2), mass_prov (:,3), mass_prov(:,4)] = cart2pol...
(mass_prov (:,2), mass_prov (:,3), mass_prov (:,4));
1 =1;
i =1;
while mass_prov(i,1) "= 0

if mass_prov(i,3) > radius
mass_prov(i,1:4) = [0 0 0 0];
else
mass_nb(nb,1) = 10" mass_prov(i,1);
phi_nb(nb,l) = mass_prov(i,2);
rho(nb,1) = mass_prov(i,3);
zeta(nb,l) = mass_prov(i,4);
1 = 141;
end
i = i41;
end
end
clear C mass_prov;
pack;
end

% calculate the total length of the simulation cylinder until

X
total_length_nb (1) = 0;
for nb = 2:max_z

total_length_nb (nb) = total_length_nb (nb—1)+dc_nb(nb—1);
end
for nb = 2:max_z

zeta(nb,:) = zeta(nb,:)+total_length_nb(nb);
end

% calculate the total length of the simulation cylinder until
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7 J
total_length (1) = 0;
for n = 2:nr_of_lens_planes
total_length(n) = total_length (n—1)+dc(n—1);
end

% assign the halos to their proper nth subvolume

Y P
nb = 1;
for n = l:nr_of_lens_planes
1 =1;
if z(n) < z_nb(nb)
i =1;
while mass_.nb(nb,i) "= 0
if zeta(nb,i) <= (total_length (n)+dc(n))
if zeta(nb,i) > total_length (n)
mass_ran(n,l) = mass_nb(nb,i);
phi(n,l) = phi_nb(nb,i);
r(n,1) = rho(nb,i);
h(n,1) = zeta(nb,i)—total_length(n);
1 = 1+41;
end
end
i=i41;
end
else
for i = 1:size(mass_nb,2)
if mass.nb(nb,i) "= 0
if zeta(nb,i) <= total_length_nb (nb+1)
if zeta(nb,i) > total_length (n)
mass_ran(n,l) = mass_nb(nb,i);
phi(n,1) = phi_nb(nb,i);
r(n,l) = rho(nb,i);
h(n,l1) = zeta(nb,i)—total_length (n);
1 = 141;
end
end
end
end
nb = nb+1;
for i = 1l:size(mass_nb,2)
if mass.nb(nb,i) "= 0
if zeta(nb,i) <= (total_length (n)+dc(n))
if zeta(nb,i) > total_length_nb (nb)
mass_ran(n,l) = mass_.nb(nb,i);
phi(n,1) = phi_nb(nb,i);
r(n,1) = rho(nb,i);
h(n,l) = zeta(nb,i)—total_length (n);
1 = 141;
end
end
end
end
end
end

% determine the proper background density for the nth subvolume
% applying the GIF N-body mass fraction fit
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for n = l:nr_of_lens_planes
bg_density (n) = (1—(—1.408e—5%z(n)"54+0.00046552*z(n)"4—0.0065069...
*z(n)"340.050636*z(n)"2—0.22559%z(n)+0.45099))*rho_mass(n);

end
end
if substruc "= 0
% substructure generation chosen
M2M_c_s = zeros(nr_of_lens_planes,3000);
subfrac = zeros(nr_of_lens_planes,3000);
mass_substr = zeros(nr_of_lens_planes,3000);
for n = 1:nr_of_lens_planes
for 1 = 1:size(mass_ran,2)
if mass_ran(n,l) "= 0
M2M_c.s(n,l) = mass_ran(n,l)*M_sun/M_c(n);
% calculate mass fraction in substructure
3
subfrac(n,l) = 10" (sqrt (0.4%(logl0 (M2M_c_s(n,1))+5))—2.74);
% get the halo masses in substructure
DD e e e
mass_substr(n,1) = subfrac(n,l)*mass_ran(n,1);
% reduce the halo masses by their fraction in substructure
PP
mass_ran(n,l) = (1—subfrac(n,l))*mass_ran(n,1);
else
subfrac(n,l) = 0;
end
end
end
end

% calculate the cut_off radii for all halos

G e e

cut-off = calc_cut_off_all (mass_ran,z,omega_m,hubble,Pc,...
nr_of_lens_planes,omega_m._z);

if substruc "= 0

% substructure generation chosen

% check which halos lie inside a small integration cylinder through
% the subvolumes

3PN
sub_halo = check_sub_halo(cut_-off,r ,h,radius_small,nr_of_lens_planes);
mass_ran_sub = zeros(nr_of_lens_planes,10,4000);

x_sub = zeros(nr_of_lens_planes,10,4000);
y-sub = zeros(nr_of_lens_planes,10,4000);
z_sub = zeros(nr_of_lens_planes,10,4000);
r_.sub = zeros(nr_of_lens_planes,10,4000);
h_sub = zeros(nr_of_lens_planes,10,4000);
cut_off_sub = zeros(nr_of_lens_planes,10,4000);

% generate subhalos in the halos that lie inside the small

% integration cylinder

D e e e e
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m = 0;
for 1 = 1:size(cut_off,2)
if sub_halo(n,l) ==1
m=m + 1;

mass_ran_sub(n,m,1) = 1;
x-sub(n,m,1) = 1;
y-sub(n,m,1) = 1;
z_sub(n,m,1) = 1;
r_sub(n,m,1) = 1;
h_sub(n,m,1) = 1;
s = 1;
mass_sub_struc = 0;
conc_par = 124/(14+z(n))*(mass_ran(n,l)*hubble /100)...
“(—0.084);
while mass_sub_struc < (mass_substr(n,l)—5«*M_sub_min/M_sun)
s =s + 1;
mass_ran_sub(n,m,s) = subhalomass(M_sun,M_sub_min, ...
M_sub_max,hubble ,M2M _c_s(n, 1), subfrac(n,l),beta,...
mass_substr(n,l),mass_ran(n,1));
mass_sub_struc = mass_sub_struc + mass_ran_sub(n,m,s);
if mass_sub_struc > (mass_substr(n,l)+5*M_sub_min /...
M_sun)
mass_sub_struc = mass_sub_struc—mass_ran_sub(n,m,s);
s =s — 1;
else
% generate coordinates for each subhalo
S
[x_sub(n,m,s),y_sub(n,m,s),z_sub(n,m,s), r_sub ...
(n,m,s),h_sub(n,m,s)] =
generate_sub_coordinates_rand (conc_par,...
cut_off,r,n,1,h);
end
end
end
end
end
% calculate the cut—off radii for all subhalos
G e e
cut_off_sub = calc_cut_off_sub_all(mass_ran_sub,z,omega_m,hubble,Pc,...

nr_of_lens_planes,omega.m_z);
% calculate the mass in substructure inside the small cylinder through
% the subvolumes
3
mass_small_cyl_in_sub = calc_.mass_small_cyl_in_sub(radius_small,...
cut_off_sub,r_sub,h_sub,mass_ran_sub,hubble ,G,M_sun,z,omegam,...
dc,Pc,MPc, nr_of_lens_planes,nr_of_small_volumes,omega.m_z);
end

% calculate the mass in halos inside the small cylinder through the
% subvolumes
G e e e e e e e e e e
mass_small_cyl = calc_mass_small_cyl(radius_small,cut_off,r ,h, mass_ran,...
hubble ,G,M_sun,z,omega_m,dc,Pc,MPc, nr _of_lens_planes,...
nr_of_small _volumes,omega_m_z);

% calculate the volume of the same small cylinder through the subvolumes

2 D

int_cyl_vol = dc.*pi.*(radius_small "2);
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% calculate the density of the small cylinder through the subvolumes
D Z
if mass_in_halos ==

% all mass clustered in halos within the mass range

if substruc == 0
% no substructure has been generated

density_small_cyl = mass_small_cyl./int_cyl_vol;
else
density_-small_cyl = (mass_small_cyl+mass_small_cyl_in_sub)./...
int_cyl_vol;
end
else
if substruc == 0
% no substructure has been generated
density_small_cyl = mass_small_cyl./int_cyl_-vol + bg_density;
else
density_-small_cyl = (mass_small_cyl+mass_small_cyl_in_sub)./...
int_cyl_vol + bg_density;
end

end

% compare to the critical density in matter for each subvolume
X

dens_quot = density_small_cyl./rho_mass;

% output dens_quot into outfile
S

fid = fopen(outfile,’a’);

count = fprintf(fid,”%10.4f’, dens_quot);
count = fprintf(fid,’\n’,” 7);

fclose (fid );

if show_plot ==

% plot the spatial halo distribution for the subvolume with index anf
3

X = zeros(1,size(cut_off,2));
Y = zeros(1,size(cut_off,2));
Z = zeros(1,size(cut_off,2));
xx = zeros (1,size(cut_off,2));
yy = zeros (1,size(cut_off, 2));
zz = zeros (1,size(cut_off,2));
clf

k = anf;

[X,Y,Z] = pol2cart(phi(k,:),r(k,:),h(k,:));
i=1;

eoX = 0;

while eoX == 0
if X(1,i)==0
X =X(1,1:(i—-1));
Y =Y(1,1:(i—1));
Z=172(1,1:(i—1));
eoX = 1;
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else
i= i41;
end
end
colordef white;
colormap (bone);
hold on
for i = 1:size(X,2)
if cut_off(k,i) "= 0
[xx,yy,zz] = sphere;
xx = cut_off(k,i)*xx+X(1,1);
vy cut_off (k,i)*yy+Y(1,i);
zz = cut_off(k,i)*zz+Z(1,1);
sl=surf(zz, yy, xx);
set (s1l, ’>FaceColor’, ’'flat’, ’FaceLighting’, ’phong’,
’DiffuseStrength’, 0.1, ’SpecularStrength’, 0.18,
>AmbientStrength’, 0.7);
shading flat
light ;

end
end
t = 0:0.2:2%xpi+0.2;
null = linspace (0,0,33);
plot3 (null,radius.*cos(t),radius.*sin(t),’k’);
plot3 (null+dc(k), radius.xcos(t),radius.*sin(t),’k’);
[x,y,2z] = cylinder(radius_small,20);
z = dc(k).*z;
plot3(null,radius_small.*cos(t), radius_small .*sin(t), k’);
plot3 (null+dc(k),radius_small.xcos(t),radius_small.*sin(t),’k’);
plot3(z,y,x,’y’);
hold off
set (gca,’ PlotBoxAspectRatio’,[1 0.27 1])
end

if show_sub_plot ==

% plot the first halo and its subhalos that penetrates the line of

% sight
S
clf
if substruc ==1
found_sub = 0;
n = 0;
while found_sub == 0 & n "= nr_of_lens_planes
n = n+1;
for 1 = 1:size(sub_halo,2)
if sub_halo(n,l1) ==1
found_sub = 1;
break
end
end
end

if found_sub ==
colordef white;
colormap (cool);
hold on
[XX,YY,ZZ] = sphere;
XX = cut_off(n,1)*XX;
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YY = cut_off(n,1)*YY;

Z7Z = cut_off(n,1)*ZZ;

plot3(YY,ZZ,XX);

for s = 2:size(mass_ran_sub,3)

if mass_ran_sub(n,1l,s) "= 0
s
[xx,yy,zz] = sphere;
xx = cut_off_sub(n,1,s)*xx+x_sub(n,1,s);
yy = cut_off_sub(n,1l,s)*yy+y-sub(n,1,s);
zz = cut_off_sub(n,1,s)*zz+z_sub(n,l,s);
s2=surf (xx, yy, zz);
set (s2, ’>FaceColor’, ’flat’, ’ FaceLighting’,
’phong’, ’'DiffuseStrength’, 0.03,
>SpecularStrength’, 0.01, ’ AmbientStrength’, 0.3);
shading flat
light ;
set (gef, ’color’, [1 1 1]);
end

end

hold off;

mass_ran(n, 1)

n

else
disp (’no halo hit this time...’);
end
end
end

clear mass bg_density fmax dc_.nb mass_nb phi_nb rho zeta maxz C ...
mass_prov dc.nb_dum max_length density_.nb XY Z_.1 Z_u total_length_nb
total_length bg_.dl bg.d2 cut M2M._c.s subfrac mass_sub mass_substr
mass_ran h r phi cut_off sub_halo mass_ran_sub x_sub y_sub z_sub r_sub
h_sub conc_par cut_off_sub mass_sub_struc mass_small_cyl_in_sub
mass_small_cyl int_cyl_vol density_small_cyl dens_quot;

pack;

end

Do sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok oK oK KoK KK Kk Kk ok 0
% subfunctions %
D sk sk sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok oK ok KoK Kk ok ok ok 0

function [outfile,z_.QSO,lambda,omega_b,omega_c,hubble,M_min,M max,n_body,...

mass_in_halos,substruc,M_sub_min,M_sub_max] = input_parameters;
% get input parameters manual/from file
input_-mode = input (’choose input mode: \nl = manual input \n2 = read input

parameters from file \n’);
if input_-mode==1
% manual input selected

outfile = input (’enter name of output file: 7,780);
z.QSO = input (’enter source redshift: s
lambda = input (’enter value of cosmological constant: )

)

omega_b = input (’enter value for omega_b:
omega_c = input (’enter value for omega.c: ’

);
)

)
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hubble = input (’enter value of hubble contant (km/MPc/s): ’);
M_min = input (’ enter minimum halo mass [M_sun]: s
M.max = input (’enter maximum halo mass [M.sun]: )
disp (’ — halo generation —’);
n_body = input(’ 0 = apply Press—Schechter mass function\n 1 = use ’.
’n—body simulation data \nchoice: ’);
if n_body == 0
disp (’ — mass distribution —’);
mass_in_halos = input(’ 0 = halos of masses outside the given ’
’boundaries contribute to a background density \n 1 = all mass ’
’is clustered in halos of sizes within the given boundaries ’...
’\ nchoice: ’);
else
mass_in_halos = 0;
end
disp (’ — substructure -’);
substruc = input(’ 0 = no substructure in halos \n 1 = generate ’.
>subhalos \nchoice: ’);
if substruc == 10
M_sub_min = 0;
M_sub_max = 0;
else
M_sub_min = input (’enter minimum substructure mass [M._un]: )
M_sub_max = input (’enter maximum substructure mass [M_sun]: )
end

elseif input_mode==2
% input via file selected
parameterfile = input (’enter name of file containing input parameters:
,787);
fid = fopen(parameterfile);
if fid=-1
error ('can‘t open the file’);

end

outfile = input (’enter name of output file: Y78 );
B = fscanf(fid,”%g’,12);

z.QSO = B(1);

lambda = B(2);

omega_b = B(3);

omega_c = B(4);

hubble = B(5);

M_min = B(6);

Mmax = B(7);

n_body = B(8);

mass_in_halos = B(9);

substruc = B(10);

M_sub_min = B(11);

M_sub_max = B(12);

disp (’ following parameters used:’);

z_QSO

lambda

omega_b

omega_c

hubble

M_min

M_max

n_body

if n_body ==
mass_in_halos
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else
mass_in_halos = 1;
end
substruc
if substruc "= 0
M _sub_min
M _sub_max
end
else
disp (’ mistyped .. ?’);
end

function [dc] = calc_-distances(z,omega_m,lambda,c,hubble ,MPc, nolp);
% calculate needed distances for each lense plane to create subvolumes [m]
for n = 1:nolp

if n=—=
dc(1,n) = quad(’light_travel’,0,z(n),[],[], omega_m,lambda,c,hubble ,MPc);
else
dc(1l,n) = quad(’light_travel’,z(n—1),z(n),[],[], omega_m,lambda,c,...
hubble ,MPc);
end
end
function [v] = generate_subvolume (dc,radius);

% generate subvolume for each lens plane
v = pixradius "2.xdc;

function [mass] = mass_in_interval(bin_steps,Mc,v,n,M_int,rho_critical,...
M_min ,M.max,c,p,A,q,delta_c_z,ipsi,MPc);
% evaluates the mass of halos clustered within the given mass range
% following the Press—Schechter mass function
mass = O0;
for i = 1:(bin_steps—1)
M(i) = M.int(i)4+10"(0.5%(logl0(M_int(i+1))—logl0(M_int(i))));
Mu = M.int(i+1);
M. = M_.int(i);
sigma_d2 = delta_c_z "2%x(M(i)/M=c)"(—(3+ipsi)/3);
sigma_d2_u = delta_c_z "2%(Mu/M=c)"(—(3+ipsi)/3);
sigma_d2_1 = delta_c_z "2%(M_.1/Mc)"(—(3+ipsi)/3);
df = (log(sqrt(1/sigma_-d2_u))—log(sqrt(1/sigma_d2.1)))/(logl0(Mu)—loglO...
(M.1));
% Press—Schechter:
f(i) = rho_critical /M(i)*df*A*(1+(q*delta_c_z"2/sigma_d2)"(—p))#*sqrt ...
(2xqxdelta_c_z "2/(pi*sigma_d2))*exp(—q*delta_c_z "2/(sigma_-d2%2));
mass = mass + (f(i)*(logl0(M.int(i+1))—loglO(M_int(i)))*v*M(i));
end

function [mass] = mass_in_interval_corr(bin_steps,Mc,v,n,M_int,...
rho_critical ,M_min,Mmax,c,p,A,q,delta_c_z,ipsi,MPc);
% evaluates the mass of halos clustered within the given mass range
% following the Press—Schechter mass function adjusted by a factor 2
mass = 0;
for i = 1:(bin_steps—1)
M(i) = M_int(i)4+10"(0.5%(logl0(M_int(i+1))—logl0(M_int(i))));
Mu = M_.int(i+1);
M_1 = M_int(i);
sigma_d2 = delta_c_z "2%x(M(i)/M=<c) " (—(3+ipsi)/3);
sigma_d2_u = delta_c_z "2%x(Mu/M=c)" (—(3+1ipsi)/3);
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sigma_d2_1 = delta_c_z "2%(M_1/Mc)"(—(3+ipsi)/3);

df = (log(sqrt(1/sigma_-d2_u))—log(sqrt(1/sigma_d2.1)))/(logl0(Mu)—...
logl0(M._1));

% Press—Schechter adjusted by a factor 2:

f(i) = rho_critical /M(i)*df*A*(1+(q*delta_c_z"2/sigma_d2)"(—p))#*sqrt ...
(qxdelta_c_z "2/(2*pixsigma_d2))*exp(—q*xdelta_c_z "2/(sigma_-d2%2));

mass = mass + (f(i)*(logl0(M.int(i+1))—logl0(M_int(i)))*v*M(i));

end

function [mass] = mass_in_interval_gif(z,rho_mass,v);
% evaluates the mass of halos cluster within the iven mass range following
% the GIF N-body fit

frac = —1.408e—5%z"54+0.00046552%z"4—-0.0065069%z " 3+0.050636%z"2—0.22559%z+0.45099;
mass = fracxrho_mass*v;
function [h,r,phi] = generate_coordinates_rand(dc,n,radius);

% generate random polar coordinates for the 1th dark halo in the nth subvolume

rand_num = rand (1);

h = rand_.num #* dc(n);

r = 0;

while r == 0
x = rand (1)
y = rand (1)
rad = sqrt(
if rad <=1

r = rad * radius;

5
;
x 24y "2);

end
end
rand_num = rand (1);
phi = rand num=#*2#*pi;

function [fmax] = getmax_mass_dist(M.c,n,M_int,rho_critical_z ,M_min,Mmax,c,...
p,A,q,delta_c_z,n_eff ,MPc);

% evaluates the maximum value of the Press—Schechter mass function

M = M.min + 0.5%(M_int(2)—M_int (1));

M.u = M.int (2);

M. = M.int(1);

sigma_d2 = delta_c_z "2%*(M/M=c)"(—(3+n_eff)/3);

sigma_d2_u = delta_c_.z "2x(M.u/Mc)"(—(3+n_eff)/3);

sigma_d2_.1 = delta_c_-z "2%(M_1/M=c)"(—(3+n_eff)/3);

df = (log(sqrt(1/sigma_d2_u))—log(sqrt(1/sigma_-d2_1)))/(logl0(Mu)—logl0(M.1));

% Press—Schechter mass function

fmax = MPc"3xrho_critical_z /Mxdf*Ax(1+(q*delta_c_z "2/sigma_d2)"(—p))*sqrt ...
(2xgxdelta_c_z "2/(pi*sigma_-d2))*exp(—q*delta_c_z "2 /(sigma_d2*2));

function [mass_ran] = halomass(M_sun,M._c,fmax,n,M_int,rho_critical_z ,Mmin,...
M.max,c,p,A,q,delta_c_z,n_eff ,MPc);
% return random halo mass drawn from the Press—Schechter halo mass function
mass_ran = 0;
while mass_.ran == 0
rand_num = rand (1);
M= 10"(logl0 (Mmin) + rand_num=*(logl0(M-max)—1logl0(Mmin)));

i =1;

while M >= M_int (i)
i=1i+4+ 1;

end

Mu = M.int(i);
M.1 = M_.int(i—1);
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sigma_d2 = delta_c_z "2%x(M/M=c)"(—(3+n_eff)/3);

sigma_d2_u = delta_c_z "2%x(Mu/M<c) " (—(3+n_eff)/3);

sigma_d2_1 = delta_c_z "2%(M_1/M=c)"(—(3+n_eff)/3);

df = (log(sqrt(1l/sigma_d2_u))—log(sqrt(1/sigma_-d2.1)))/(logl0(M.u)—loglO...
(M.1));

% Press—Schechter mass function:

f = MPc"3*%rho_critical_z /MxdfxAx(1+(qxdelta_c_z"2/sigma_d2)"(—p))#*sqrt ...
(2%q*delta_c_z "2/(pi*sigma_d2))*exp(—q*delta_c_z "2/(sigma_-d2x2));

rand_num = rand (1);

if rand_.num <= f/fmax(n)
mass_ran = M/M_sun;

end

end

function [cut_off] = calc_cut_off_all(mass_ran,z,omega.m,hubble,Pc,nolp,...
omega._m._z);
% calculate the cut_off radii for all halos
for n = 1l:nolp
if n==
cut_off(n,:) = calc_cut_off(mass_ran,z,n,omega_m,hubble,Pc,...
omega_m_z(n));

else
cut_off_ dum = calc_cut_off(mass_ran,z,n,omega_m,hubble,Pc,omega_m_z(n));
if size(cut_off dum,2) > size(cut_off,2)
cut_off = [cut_off zeros(n—1,size(cut_off_dum,2)—size(cut_off,2))];
end
cut_off(n,:) = cut_off dum;
end
end
function [sub_halo] = check_sub_halo(cut_-off,r,h,radius_small,nolp);

% check which halos penetrate the small integration cylinder
for n = 1:nolp
for 1 = 1:size(cut_off,2)
if cut_off(n,1) ==0
% space in cut_off matrix not occupied by a halo
sub_halo(n,l) = 0;
else
if (r(n,l)—cut_off(n,1)) <= radius_small
% halo reaches into the small integration cylinder
if (h(n,l)—cut_off(n,1)) > 0
% taking out the halos that don’t lie totally in the

% subvolume — only on one side
sub_halo(n,1) = 1;
else
sub_halo(n,1) = 0;
end
else
sub_halo(n,1) = 0;
end
end
end
end
function [fsubmax] = getmax_sub_mass_dist(M_sun,M_sub_min, hubble);

% evaluate the maximum value of the subhale mass function
fsubmax = 1073.2%(M_sub_minshubble /(100¥*M_un))"(—1.9)*hubble /(100%*M_sun);
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function |[mass_ran_sub] = subhalomass(M_sun,M_sub_min, M_sub_max, hubble, ...
M2M _c_s,subfrac,beta, mass_substr , mass_ran);
% return random subhalo mass drawn from the given subhalo mass distribution
% function
mass_ran_sub = 0;
alpha = 0.966—0.028+logl0 (M2M_c.s);
normaliz = real(subfrac/(gammainc(l—alpha,l/beta)—gammainc(l—alpha,le—4/beta)));

fsubmax = normaliz /(beta*gamma(l—alpha))*(M_sub_min/(beta*(mass_substr+...
mass-ran)*M_sun))"(—alpha)*exp(—M_sub_min /(beta*(mass_substr+mass_ran )*...
M_sun));

while mass_ran_sub ==
rand_num = rand (1);
M_sub = 10" (logl10(M_sub_min) + rand_num=x(logl0(M_sub_max)—1logl0...
(M_sub_min)));

f = normaliz /(beta*gamma(l—alpha))*(M_sub/(beta*(mass_substr+mass_ran)*...
M_sun))"(—alpha)*exp(—M_sub/(beta*(mass_substr+mass_ran)*M_sun));
rand_num = rand (1);
if rand.num <= f/fsubmax
mass_ran_sub = M_sub/M_sun;
end
end
function [x_sub,y_sub,z_sub,r_sub,h_sub]= generate_sub_coordinates_rand...

(conc_par,cut_off,r,n,1,h);
% generate coordinates for the mth subhalo inside the lth halo inside the
% nth subvolume

got_r = 0;
while got_.r == 0
rand_.num._r = rand (1);
f = (140.244*conc_par )*(rand_num_r"2.75)/(1+0.244%conc_par*rand_num_r ~2);
rand_num_f = rand (1);
if rand_.num_f <= f
r_polar = rand_num_r*cut_off(n,l); % r_polar in units of cut_off(n,l)
got_.r = 1;
end
end
rand_num = rand(1);
theta = rand_.num * 2 % pi;

rand_num = rand (1);

phi = rand_num * pi — pi/2;

[x_sub,y_sub,z_sub] = sph2cart(theta,phi,r_polar);
r_sub = sqrt(z_sub"24+r(n,1)"2—2xz_subxr(n,l)+x_sub "2);
h_sub = h(n,1) + y_sub;

function [cut_off_sub] = calc_cut_off_sub_all(mass_ran_sub,z,omega_m,hubble,...
Pc,nolp,omega.m_z);
% calculate the cut_off radii for all subhalos

for n = 1:nolp
for m = 1:size(mass_ran_sub,2)
cut_off_sub(n,m,:) = calc_cut_off_sub (mass_ran_sub,z,n,m,omegam,...
hubble ,Pc,omega_m_z(n));
end
end
function [mass_small_cyl] = calc_.mass_small_cyl(radius_small,cut_off,r ,h,...

mass_ran , hubble ,G,M_sun, z ,omega_m,dc,Pc,MPc, nolp,nosv,omega_m_z);
% calculate the masses inside a small cylinder through the subvolumes [kg]
mass_small_cyl = zeros (1,nolp);
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for n = 1:nolp
for 1 = 1:size(cut-off,2)
if cut_off(n,l)==0
% space in cut_off matrix not occupied by a halo
else
if (r(n,l)—cut_off(n,1)) <= radius_small
% halo reaches into the small cylinder
if (h(n,l)-—cut_off(n,1)) > 0
% taking out the halos which don’t lie totally inside the

% subvolume — only on one side

rel_cyl_length = 2xsqrt ((cut-off(n,1))"2—(r(n,1))"2);
small_volume = rel_cyl_length /nosvxpi*(radius_small "2);
conc_par = 124/(14z(n))*(mass_ran(n,1)*hubble /100)"(—0.084);
dens_c = real(200/3*conc_par “3/(log(l4+conc_par)—...

conc_par/(14+conc_par)));
for m = 1:(nosv/2)
% deviding the halo—cylinder into subvolumes
b = (2*m—1)/(2%nosv)*rel_cyl_length;
r.rho = sqrt ((r(n,1))"2+b"2);
if r.rho <= cut_off(n,1)
% checking that the subvolume lies inside the
% cut_off radius
x = r_rho/cut_off(n,1);
rho = (3%(1000% hubble /MPc)"2) /(8% pi*G)*(1+z(n))...
“3xomega_m/omega_m_z(n)*xdens_c /(conc_par*x*...
(14 conc_parxx)"2);

mass_small_volume = rho*small_volume;
mass_small_cyl(n) = mass_small_cyl(n) + (2x*...
mass_small_volume);
end
end
end
end
end
end

end

function [mass_small_cyl_in_sub] = calc_mass_small_cyl_in_sub (radius_small,...

cut_off_sub,r_sub,h_sub,mass_ran_sub,hubble,G,M_sun,z,omega_m,dc,Pc,
MPc, nolp ,nosv,omega_m_z);

% calculate the masses inside a small cylinder through the subvolumes [kg]
mass_small_cyl_in_sub = zeros (1,nolp);
for n = 1:nolp
for m = 1:size(cut_off_sub,2)
for s = 2:size(cut_off_sub,3)
if cut_off_sub(n,m,s) "= 0
if (r_sub(n,m,s)—cut_off_sub(n,m,s)) <= radius_small
if (h_sub(n,m,s)—cut_off_sub(n,m,s)) > 0
rel_cyl_length = 2xsqrt ((cut_off_sub(n,m,s))"2—...
(r_sub(n,m,5))"2);
small_volume = rel_cyl_length/nosvxpi*(radius_small "2);
conc_par = 124/(14z(n))*(mass_ran_sub (n,m,s)xhubble /...
100)"(—0.084);
dens_¢ = real(200/3%conc_par"3/(log(l4+conc_par)—...
conc_par/(l+conc_par)));
for o = 1:(nosv/2)
% deviding the halo—cylinder into subvolumes
b = (2¥0—1)/(2*nosv)*rel_cyl_length;
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r.rho = sqrt((r-sub(n,m,s))"2+b"2);
if r_rho <= cut_off_sub(n,m,s)
% checking that the subvolume lies inside the
% cut_off radius
x = r.rho/cut_off_sub(n,m,s);
rho = (3%(1000%hubble/MPc)"2) /(8% pi*G)*(1+...
z(n)) " 3%omega_m/omega_m_z(n)*dens_c /...
(conc_par*x*(l+conc_parxx)”2);
mass_small_volume = rho*small_volume;
mass_small_cyl_in_sub(n) = ...
mass_small_cyl_in_sub(n) + (2x*...
mass_small_volume);
end
end
end
end
end
end
end
end

function [cut_off] = calc_cut_off (mass_ran,z,n,omega_m,hubble,Pc,omega m._z);

% calculate the cut—off-radius of all generated halos in the nth subvolume

% (r200)

cut_off = 1.63e—2.%(mass_ran(n,:).*hubble./100)."(1/83).*(omega_-m./omega_m_z)...
“(-1/3)%(1+z(n)) " (—1)*(hubble /100)"(—1)*1000%Pc;

function [cut_off_sub] = calc_cut_off_sub(mass_ran_sub,z,n,m,omega_m,hubble,...
Pc,omega_m_z);

% calculate the cut—off-radius of all generated halos in the nth subvolume

%(r200)

cut_off_sub = 1.63e—2.¥(mass_ran_sub(n,m,:).*hubble./100)."(1/3).*(omegam. /...
omegam.z) (—1/3)x(1+z(n))"(—1)*(hubble/100)"(—1)*1000%Pc;

cut_off_sub (1) = mass_.ran_sub(n,m,1);

function y = light_travel(x,omega_-m,lambda,c,hubble,MPc);

% integrant of Surpi’s formula to evaluate the distance for a volume between

% z(n—1) and z(n)

y = ¢/(1000xhubble )*MPcx((1+x).* sqrt (omega_m.*(1+x)."3— (omega_m+lambda —1).x*...
(14x)."24+1lambda))." (—1);

function y = sigma_integral(x,M,omega_m,omega_c,omega_b,hubble,c,ipsi,...
rho_critical,D_.1,D_10,z_eq,k_eq, k_silk,s,alpha_c,beta_c,alpha_b,beta_b,...
beta_node,delta_h);

% calculates the integral for sigma_d2

MPc = 3.0857e22; % MPc in m

theta27 = 1.0104; % theta27 = T(CMB)/2.7K

h = hubble /100;
R ((M%3)/(4*pi*rho_critical))"(1/3);

W= 3./(x.%R)."3.%(sin(x.#¥R)—x.*%R.* cos (x.%R));
% fourier transform of the spherical top hat function of radius R(M)

q=x./(13.41%xk_eq);
% k scaled with k_eq
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f =1./(14(x.%s/5.4).74);

C.k.1.b = 14.2+386./(14+69.9.%q."1.08);
T_k_1.b = log(exp(1l)+1.8«beta_c.*q)./(log(exp(1l)+1.8«beta_c.*q)+C_k_1_b.xq."2);
% pressureless transfer function for (k,1,beta_c)

C_k.a_b = 14.2/alpha_c+386./(1+69.9.xq."1.08);
T_k-a_b = log(exp(l)+1.8%beta_c.xq)./(log(exp(1)+1.8xbeta_c.xq)+C_k_a_b.*xq."2);
% pressureless transfer function for (k,alpha_c,beta_c)

Tc = f.«T_k_1.b+(1—f).*T_k_a_b;
% CDM sector transfer function

s-.t = s./(1+(beta_node./(x.xs))."3).7(1/3);
% effective sound horizon

C.k.1.1 = 14.2+386./(1+69.9.%q."1.08);
T_ k1.1 = log(exp(1)+1.8.%q)./(log(exp(1)+1.8.%q)+C_k_1_1.%q."2);
% pressureless transfer function for (k,1,1)

Tb = (T k.1.1./(1+(x.xs./5.2)."2)+alpha_b./(1+(beta_b./(x.%s))."3).%...
exp(—(x./k_silk)."1.4)).*sin(x.*s_t)./(x.*s_t);
% baryon sector transfer function

T = omega_b/omega_m.*T_btomega_c/omegam.*T _c;
% transfer function

delta_k2 = delta_h “2.%(c.*x.*MPc/(1000%hubble)).”(3+ipsi).*T."2.«D_1.72./...
D_10."2;

% present—day normalization of the power spectrum

y = 1./x.+delta_k2.%x(W."2);
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Appendix B

List of input parameters

Example of adequate input involving the default parameters (input via file is read
into a 12-elemented row vector organised as following):

0.5

0.7

0.04

0.26

70

lell

lel4

5e8

lell

% z_QSO

% lambda

% omega_b

% omega_c

% hubble [km/MPc/s ]
% M_min [M_sun ]

% M_max [M_sun]

% n—body
%

% mass_in_halos
%
%
%

% substruc

%
% M_sub_min [M_sun]

% M_sub_max [M_sun]

redshift of the light source
cosmological constant today
cosmological baryon density today
cosmological CDM density today

Hubble constant

: minimum halo mass

: maximum halo mass

0 => Press—Schechter mass function
1

: 0 => all mass clustered
1 => Press—Schechter mass fraction
2 => Press—Schechter mass fraction / 2
3 => GIF mass fraction fit

: 0 => no substructure

1 => substructure

: minimum subhalo mass

: maximum subhalo mass
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