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Cosmic Microwave Background Radiation (CMBR)
- Quick Facts -

e Comes from all directions in the sky

e Black body spectrum with:
e T,=2.73K
e Peak wavelength =2 mm
e Close to isotropic, except for:

e arge-scale doppler (dipole) anisotropy
e to our motion with respect to the CMBR
° aﬁhscale temperature fluctuations

dueto HEnsity fluctuations at z = 1100

History of CMBR research |

Nobel prize to
Smoot and Mather
for their work with COBE]




History of CMBR research Il

e 1934: First prediction of the existence of the
CMBR

e Tolman: Expanding Universe should be filled by
thermal radiation its hot past

e 1948: First prediction of the current CMBR
temperature

\?amow, Alpher & Herman: Ty=5 K

\:EG EMBR discovered by Wilson & Penzias

ature measured to be T;=3.5K
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History of CMBR research IlI

e 1992: COBE satellite
e Close to perfect BB, with T=2.73 K
e Large-scale dipole
e Small-scale temperature fluctuations (~10- K)
e Late 90s: MAXIMA & BOOMERanG balloons
e Small-scale temperature and polarization variations

~9-2003 - now: WMAP satellite
\‘\\%F:Psky maps of polarization and small-scale temperature
riations
° 2009¥ nck satellite
e Superiorypolarization measurement
e Planck-sc. gpﬁysics???
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Why is there a CMB?

e Early Universe (t<240 000 yr): Hot —
e Baryons ionized
e Universe opaque to photons
e Photon-baryon plasma

\o\.Cosmic expansion —

\Hnjverse neutral at t~240 000 yr
° i%rse transparent to photons

bueg 618

Photon trajectories from the Early
Universe

ow

when the CMBR was emitted.
Cosmic expansign -\ Energy loss due to redshift -~ T=2.73K

Support for the Big Bang model

e Expansion of the Universe

e The primordial abundances of light
elements

e The age consensus




The CMBR as support for the Big Bang model |

e Existence of the CMBR :

e Richard Tolman (1934): Expanding Universe
should be filled with thermal radiation from hot
past

e CMBR = "Afterglow of the Big Bang”

ifficult to understand in Steady State-type
ologies

The CMBR as support for the Big Bang model Il

e Temperature of the CMBR:
e T, = 2.73 K fits Big Bang model
(but note: the a priori prediction was not this precise)
e Big bang model predicts: T (z) = (1+2) T,
Confirmed by a measurements uptoz=3
all-scale temperature anisotropies:

sults in cosmological parameter values
istent with other methods
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Properties of the CMBR I:
Spectral shape and temperature
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Temperat}ﬁ a\>€\rage over all directions: <T> = 2.73K

Properties of the CMBR II:
The Dipole Anisotropy

0 our movement (dominated by the motion
of the Sun the Milky Way and of the Local Group
towards'\Hydra) relative to the CMBR

Properties of the CMBR llI:
Small-scale temperature fluctuations

Overall CMBR, including Doppler dipole

CMBR with dipole subtracted

CMBR with Milky Way and nearby
structure subtracted — Small-scale
temperature fluctuations (RMS 10+ K)
Very important for cosmological
model fitting!

Suggestion for literature exercise:
Strange CMBR anisotropies

s§ of evil” & the cold spot:
Signatur S { non-standard cosmology?




Origin of the CMBR:
Important Concepts

e Radiation-matter equality
e Photon decoupling

e Recombination

elast scattering surface
\o\T% chs-Wolfe effect
oACO&tiC eaks

AW

Origin of the CMBR:
Radiation-matter equality

Matter

/ Radiation

Matter-
domination

Radiation-
\‘\ domination
~ .
Time

Radiationsmatter equality happened at
z=3570,\T = 9730 K, t =47 000 yrs

Density
Dark energy

Origin of the CMBR:
Decoupling |

During radiation-domination, and during a short period
in the matter-dominated era, photons kept the atoms ionized

Thomson scattering :
y+ e - y+ e

Mean free path of photons:

A=t
no,

Origin of the CMBR:
Decoupling Il

Rate of scattering interactions for this process:

c
= 1 =no.C

This process freezes out when:

N<H

This leads
- Baryons and photons evolve separately

decoupling of photons from the baryonic plasma

Origin of the CMBR:
Recombination

At around the same time, the expansion of the Universe
causes the energy of the photons to drop below 13.6 eV
- Hydrogen starts (re)combining and the Universe goes from
ionized to neutral, which speeds up the decoupling

Recombination happened at
z=1370, T = 3740 K, t = 240 000 yrs

hoton decoupling happened at
00, T = 3000 K, t = 350 000 yrs

Origin of the CMBR:
Last Scattering Surface

Last scattering surface

This fast scattering surface is located at

z=1100,\T = 3000 K, t = 350 000 yrs

Now




Origin of the CMBR:
Small-scale temperature fluctuations

Density fluctuations present at the time of last scattering are
evident as spatial temperature fluctuations in the CMBR

Recall : 9:|—
dA

[In d&gchmark model, the horizon distance at zygg
e

| ~*~corresponds to 6,~1°
e On le}9>9H: Primordial CDM density fluctuations
e On scales, 8<8,;: Acoustic oscillations in the photon-

baryon flu \\

The Sachs-Wolfe effect

Underdense
region

Gravitational redshift
Gravitational blueshift

Average
density

%ial energy ®

verdense region

The late/integrated Sachs-Wolfe effect
(or Rees-Sciama effect)

The gravitational red/blueshift of CMBR photons due to structure along
the line of sight towards the last scattering surface.
Static potential well — Blueshift climbing in, redshift climbin out (no net effect)
But net redshifts/blueshifts will happen if the potential well
gets shallower/deeper while crossing!

Is a huge, expanding void
along the line of sight the
reason for the CMBR
‘cold spot'?

The Angular Power Spectrum |

When studying CMBR temperature fluctuations
as a function of angular scale, one usually plots:

2
where:
| isthemultipole(note: high| meanssmall 8)
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C, istheangular correlation function of g

AW

The Angular Power Spectrum Il

WMAP 5-year data and model fit
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Cosmological Information |
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The positions of the

0 CMBR peaks are very

sensitive to the geometry.

sor 7| The observed positions

indicate that our Universe
is very close to flat!
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Cosmological Information Il
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