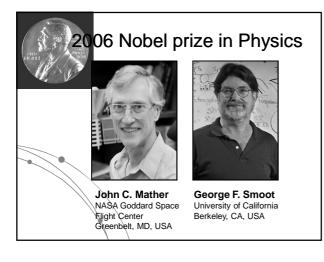
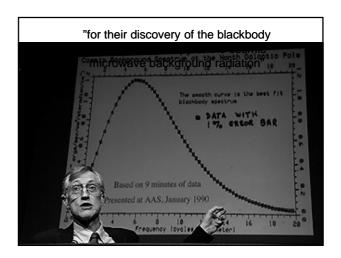

Cosmology AS7009, 2010 Lecture 7

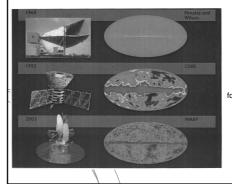



Outline

- Introduction to the CMBR
 - History of CMBR research
 - Support for the Big Bang model
- Properties of the CMBR
 - Temperature
 - The dipole anisotropy
 - Small-scale temperature fluctuations
- Origin of the CMBR
 - RecombinationDecoupling

 - Last scattering surface
 - Small-scale temperature fluctuations
- Cosmological information

Covers chapter 9 in Ryden



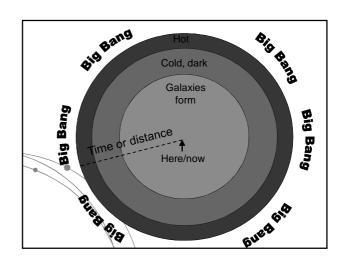
Cosmic Microwave Background Radiation (CMBR)

- Quick Facts -
- Comes from all directions in the sky
- Black body spectrum with:
 - T₀≈ 2.73 K
 - Peak wavelength ≈ 2 mm
- Close to isotropic, except for:
 - Large-scale doppler (dipole) anisotropy due to our motion with respect to the CMBR
 - Small-scale temperature fluctuations due to density fluctuations at z ≈ 1100

History of CMBR research I

Nobel prize to Smoot and Mather for their work with COBE

History of CMBR research II


- 1934: First prediction of the existence of the CMBR
 - Tolman: Expanding Universe should be filled by thermal radiation its hot past
- 1948: First prediction of the current CMBR temperature
- Gamow, Alpher & Herman: T₀≈ 5 K
- 1965: CMBR discovered by Wilson & Penzias
 - Temperature measured to be T₀ ≈ 3.5 K

History of CMBR research III

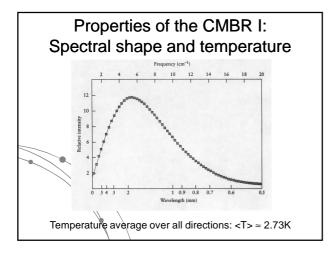
- 1992: COBE satellite
 - Close to perfect BB, with T ≈ 2.73 K
 - Large-scale dipole
 - Small-scale temperature fluctuations (~10-5 K)
- Late 90s: MAXIMA & BOOMERanG balloons
 - Small-scale temperature and polarization variations
- 2003 now: WMAP satellite
 - Full-sky maps of polarization and small-scale temperature variations
- 2009 now: Planck satellite
 - Superior polarization measurement
 - Planck-scale physics???

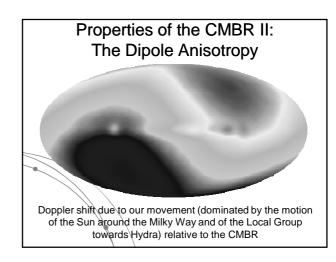
Why is there a CMB?

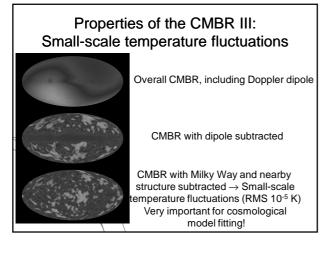
- \bullet Early Universe (t<240 000 yr): Hot \rightarrow
 - Baryons ionized
 - Universe opaque to photons
 - Photon-baryon plasma
- Cosmic expansion →
 - Universe neutral at t~240 000 yr
 - Universe transparent to photons

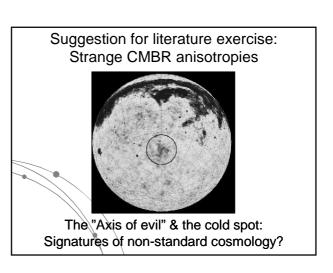
Photon trajectories from the Early Universe Neutral Neutral (cosmic fog) The temperature of the plasma was about 3000 K when the CMBR was emitted. Cosmic expansion — Energy loss due to redshift — T ≈ 2.73 K

Support for the Big Bang model

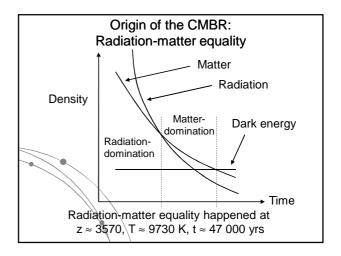

- Expansion of the Universe
- The primordial abundances of light elements
- The age consensus
- The CMBR


The CMBR as support for the Big Bang model I


- Existence of the CMBR:
 - Richard Tolman (1934): Expanding Universe should be filled with thermal radiation from hot past
 - CMBR ≈ "Afterglow of the Big Bang"
 - Difficult to understand in Steady State-type cosmologies


The CMBR as support for the Big Bang model II

- Temperature of the CMBR:
 - T₀ = 2.73 K fits Big Bang model (but note: the a priori prediction was <u>not</u> this precise)
 - Big bang model predicts: $T(z) = (1+z) T_0$ Confirmed by measurements up to $z \approx 3$
- Small-scale temperature anisotropies:
 - Results in cosmological parameter values consistent with other methods



Origin of the CMBR: Important Concepts

- Radiation-matter equality
- Photon decoupling
- Recombination
- Last scattering surface
- The Sachs-Wolfe effect
- Acoustic peaks

Origin of the CMBR: Decoupling I

During radiation-domination, and during a short period in the matter-dominated era, photons kept the atoms ionized

Thomson scattering:

Mean free path of photons:

 $\gamma + e^{-} \rightarrow \gamma + e^{-}$

$$\lambda = \frac{1}{n_{\rm e}\sigma_{\rm e}}$$

Origin of the CMBR: Decoupling II

Rate of scattering interactions for this process:

$$\Gamma = \frac{c}{\lambda} = n_{\rm e} \sigma_{\rm e} c$$

This process freezes out when:

 $\Gamma < H$

This leads to decoupling of photons from the baryonic plasma

→ Baryons and photons evolve separately

Origin of the CMBR: Recombination

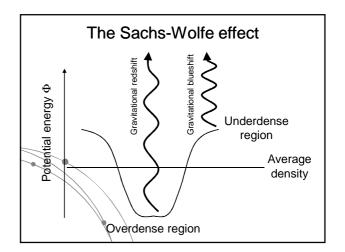
At around the same time, the expansion of the Universe causes the energy of the photons to drop below 13.6 eV

→ Hydrogen starts (re)combining and the Universe goes from ionized to neutral, which speeds up the decoupling

Recombination happened at $z \approx 1370$, $T \approx 3740$ K, $t \approx 240000$ yrs

Photon decoupling happened at ≿≈ 1100, T ≈ 3000 K, t ≈ 350 000 yrs

Origin of the CMBR: Last Scattering Surface Last scattering surface Last scattering surface Neutral (cosmic fog) CMBR photons reach us from a fog-like 'wall'. This last scattering surface is located at $z \approx 1100$, $T \approx 3000$ K, $t \approx 350000$ yrs


Origin of the CMBR: Small-scale temperature fluctuations

Density fluctuations present at the time of last scattering are evident as spatial temperature fluctuations in the CMBR

Recall:
$$\theta = \frac{l}{d_A}$$

In the benchmark model, the horizon distance at z_{CMBR} corresponds to θ_{H} \approx 1°

- On scales θ>θ_H: Primordial CDM density fluctuations
- On scales 6<€_H: Acoustic oscillations in the photonbaryon fluid

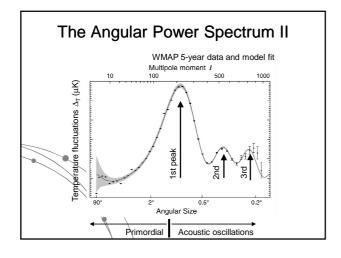
The late/integrated Sachs-Wolfe effect (or Rees-Sciama effect)

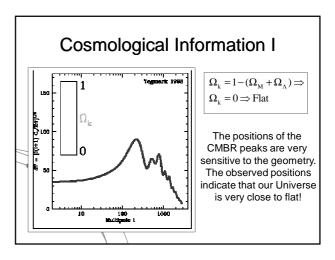
The gravitational red/blueshift of CMBR photons due to structure along the line of sight towards the last scattering surface.

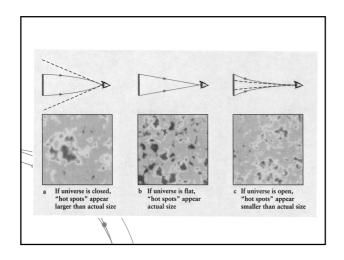
Static potential well → Blueshift climbing in, redshift climbin out (no net effect) But net redshifts/blueshifts will happen if the potential well gets shallower/deeper while crossing!

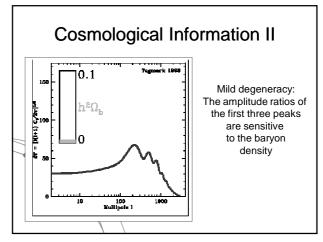
Is a huge, expanding void along the line of sight the reason for the CMBR 'cold spot'?

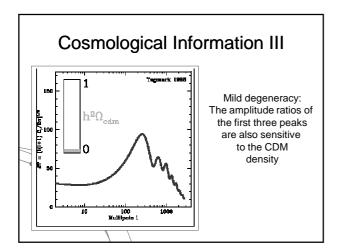
The Angular Power Spectrum I


When studying CMBR temperature fluctuations as a function of angular scale, one usually plots:


$$\Delta_T = \left(\frac{l(l+1)}{2\pi}C_l\right)^{1/2} \langle T \rangle$$


where:


l is the multipole (note: high l means small θ)


 C_l is the angular correlation function of $\frac{\delta \Gamma}{\Gamma}$

