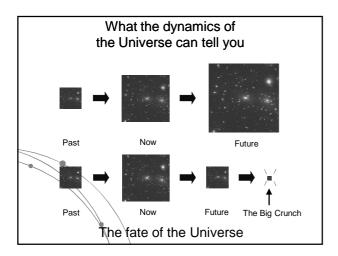


Outline

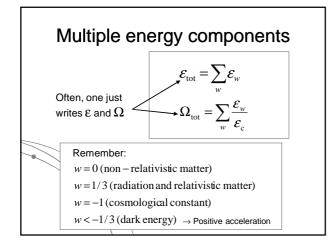
- Properties and fate of single-component Universes
 - Empty Universe
 - Flat Universe
 - Matter/Radiation/Lambda-dominated Universe
 - Einstein-de Sitter Universe
- Properties and fate of multiple-component
 Universes
 - Matter + curvature
 - Benchmark model
 - Other dark energy scenarios

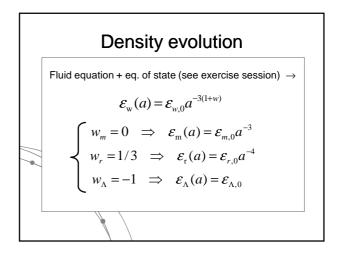
Covers chapters 5 & 6 in Ryden



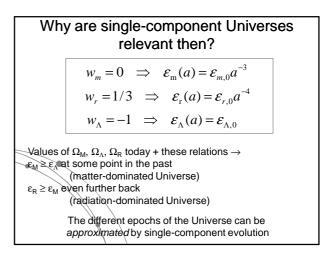
Density evolution (general)

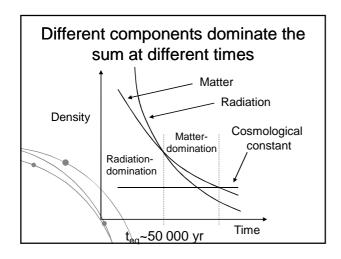
- Friedmann equation + fluid equation + equation of state \rightarrow a(t), ε (t) or t(a), ε (a)
- Problem: There are many components in the Universe →
 - Evolution complicated
 - Different components dominate evolution at different times

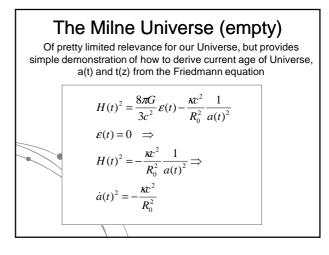


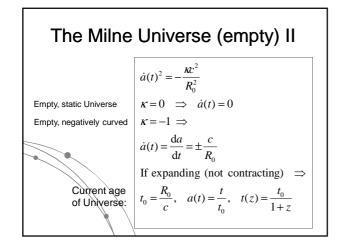


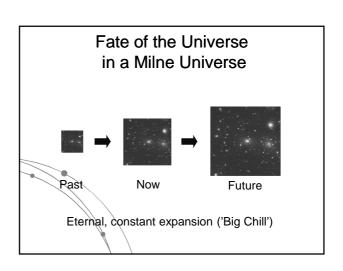
$\begin{array}{c} \text{The benchmark model} \\ \text{The currently favoured cosmological model:} \\ \Omega_{\text{M}} \approx 0.3 \\ \Omega_{\text{M}} = \Omega_{\text{Non-baryons (CDM)}} + \Omega_{\text{Baryons}} \\ \Omega_{\text{Non-baryons (CDM)}} \approx 0.26 \\ \Omega_{\text{Baryons}} \approx 0.04 \\ \end{array} \end{array} \begin{array}{c} \text{More on this in the dark matter lecture} \\ \Omega_{\Lambda} \approx 0.7 \\ \Omega_{R} \approx 8.4 \times 10^{-5} \\ \Omega_{R} = \Omega_{\text{CMB}} + \Omega_{\text{v}} + \Omega_{\text{starlight}} \\ \Omega_{\text{CMB}} \approx 5.0 \times 10^{-5} \\ \Omega_{\text{v}} \approx 3.4 \times 10^{-5} \\ \Omega_{\text{v}} \approx 3.4 \times 10^{-5} \\ \Omega_{\text{v}} \approx 3.4 \times 10^{-5} \\ \Omega_{\text{tot}} = \Omega_{\text{M}} + \Omega_{\Lambda} + \Omega_{R} \approx 1.0 \rightarrow \\ \text{Flat Universe } (\kappa = 0) \\ \end{array}$











Proper distance in a Milne Universe

Proper distance from us to object which emitted light at $t_{\rm e}$:

$$d_{p}(t_{0}) = c \int_{t_{e}}^{t_{0}} \frac{\mathrm{d}t}{a(t)}$$

$$a(t) = \frac{t}{t_0} \implies d_{\mathbf{p}}(t_0) = ct_0 \int_{t_e}^{t_0} \frac{dt}{t} = ct_0 \ln \left(\frac{t_0}{t_e} \right)$$

$$t_e = \frac{t_0}{1+z} \Rightarrow d_p(t_0) = ct_0 \ln(1+z) = \frac{c}{H_0} \ln(1+z)$$

Flat, single-component Universes

For
$$w \neq -1$$
:

$$a(t) = \left(\frac{t}{t_0}\right)^{2/(3+3w)}$$

$$\varepsilon(t) = \varepsilon_0 \left(\frac{t}{t_0}\right)^{-2}$$

Important types of flat, single-component Universes

Radiation-only Universe (radiation-dominated epoch)

$$t_0 = \frac{1}{2H_0}, \quad a(t) = \left(\frac{t}{t_0}\right)^{1/2}$$

Matter-only Universe (matter-dominated epoch)

$$t_0 = \frac{2}{3H_0}, \quad a(t) = \left(\frac{t}{t_0}\right)^{2/3}$$

Λ-only Universe I

$$\Lambda$$
 has $w = -1 \Rightarrow$

$$\dot{a}^2 = \frac{8\pi G \varepsilon_{\Lambda}}{3c^2} a^2$$

Rearrange:

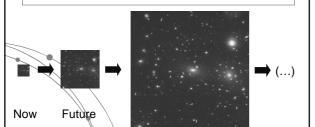
$$\dot{a}^2 = H_0^2 a^2$$
 if

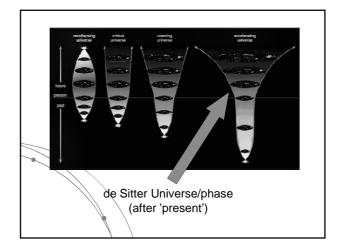
$$H_0 = \left(\frac{8\pi G \varepsilon_{\Lambda}}{3c^2}\right)^{1/2}$$

Λ -only Universe II

Solution:

 $a(t) = e^{H_0(t-t_0)} \mathop{\rm de}_{\rm Same\ growth\ as\ in\ Steady\ state\ cosmology}^{\rm de\ Gitter\ Universe\ (de\ Sitter\ phase)}$



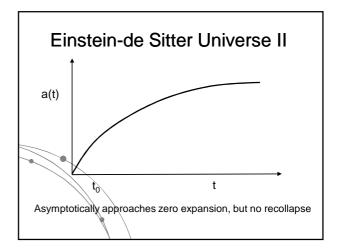


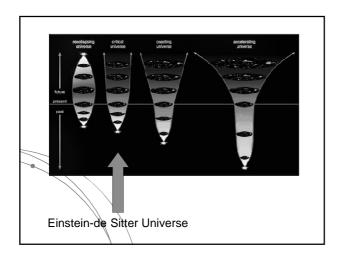
Einstein-de Sitter Universe I

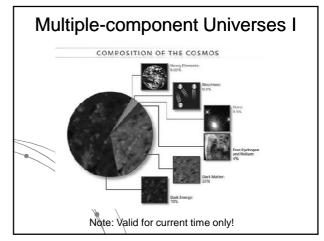
This served as the benchmark model up until the mid-1990s

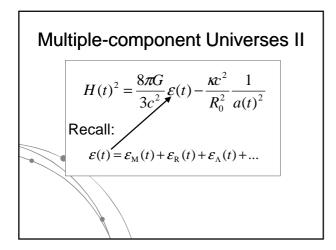
- Flat (i.e. critical-density), matter-dominated Universe
- $\Omega_{\rm M}$ = 1.0, $\Omega_{\rm tot}$ = 1.0, κ = 0

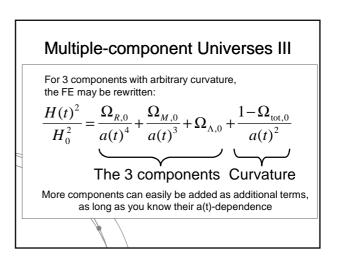
$$t_0 = \frac{2}{3H_0}, \quad a(t) = \left(\frac{t}{t_0}\right)^{2/3}$$











Multiple-component Universes IV

Time (from Big Bang):

$$t(a) = \frac{1}{H_0} \int_0^a \frac{\mathrm{d}a}{\left[\Omega_{R,0} a^{-2} + \Omega_{M,0} a^{-1} + \Omega_{\Lambda,0} a + (1 - \Omega_{\text{tot},0})\right]^{1/2}}$$

Lookback-time = t_0 -t(a)

Nasty integral! No analytical solution in general case – must be integrated numerically!

Special case: Matter + Curvature I

$$\frac{H(t)^2}{H_0^2} = \frac{\Omega_{\text{M},0}}{a(t)^3} + \frac{1 - \Omega_{\text{M},0}}{a(t)^2}$$

H(t)-evolution → Possible fates of Universe
This is one of the hand-in exercises!
(Note: Lots of help on page 85 in Ryden)

