Cosmology 1FA209 2015, 10 credits Lecture 1: Introduction

Formal Information

- •Teacher:
 - Erik Zackrisson
 - Office in the astronomy corrdinor on floor 3 in house 6 just ring the bell to get in!
 - Telephone: 018-471 5975
 - E-mail: erik.zackrisson@physics.uu.se
- •Course homepage:
- http://www.astro.uu.se/~ez/kurs/Cosmology15.html

Outline for today

- Formal Stuff
- Course outline
- Cosmic epochs

Course literature

Introduction to cosmology
Barbara Ryden
Editions from 2002/2003
& 2013 – both are OK!
Around 600 SEK (e.g.
AdLibris, Bokus)

Examination

- Seminars
 - •Seminar I: Common misconceptions of modern cosmology
 - •Seminar II: Parallel Universes •Seminar III: Strange Universe
- •Literature exercise
 - •Written essay (≈ 3 pages)
 - •Oral presentation (≈10 minutes)
- •Hand-in exercises

Hand-in exercises

- 27 exercises downloadable from the course homepage
- A fraction of these will be solved (by me) on the blackboard during the tutorials
- Remember: Much easier to grasp the solutions if you have already attempted to solve these, before going to class!
- 6 of the exercises (somewhat similar to the ones solved in class) are hand-in problems
 - Deadline January 22
 - Grade: Fail, 3, 4, 5

Seminars

- Instructions available from course homepage
- - Practice finding and reading relevant research papers
- Practice analyzing astronomical dataPractice critical thinking
- Practice scientific creativity
- Practice illustrating abstract concepts
- Practice discussing in front of audience
- What if you cannot attend the seminars?
 - Have to present results in written report before end of course $(\rightarrow$ more work!)

Seminar I

- Title: Common misconceptions about modern cosmology
- Grade: Fail, 3, 4, 5
- Preparation:
 - Read suggested papers + others
 - Answer questions
 - Prepare to present answers and results in class

Seminar II

• Title: Parallel universes

• Grade: Fail, Pass

- Preparation:
 - Read suggested paper
 - Think about ways to explain the four levels of parallel universes and to create vizualations of these

Seminar III

• Title: Strange universe

• Grade: Fail, 3, 4, 5

- Preparation:
 - Analyze mock data set
 - Prepare to present your findings in class

Literature exercise

- Choose topic individually
- Find suitable articles
 - Published papers (ADS abstract service) http://adsabs.harvard.edu/abstract_service.html
 - Preprints: http://www.arxiv.org

• Written report (≈ 3 pages), deadline January 8

Grade: Fail, 3, 4, 5

• Oral presentation (\approx 10 minutes)

January 15 (10-12) **Grade:** Fail, 3, 4, 5

Literature exercise

If you cannot meet the deadlines for the written report or the oral presentation, you may hand the report in at some later time

But: You will then have to give the oral presentation at one of the Galaxies and Cosmology group meetings.

This is far scarier! Not recommended!

Suggested topics I

- Topology of the Universe
- Strange CMBR anisotropies
- Dark flow
- Varying constants of nature
- •Wormholes and time travel
- •The anthropic principle in cosmology
- Brane cosmology
- Gravitational waves

Suggested topics II

Off-Broadway:

- Alternative theories of gravity in relation to dark matter
- \bullet Alternative theories of gravity in relation to dark energy
- Inhomogeneous models in relation to dark energy
- Varying speed of light cosmology

Off-off-Broadway:

- Quasi Steady-State cosmology
- Plasma cosmology

But please feel free to suggest other topics!

Grading

- •The final grade will be the mean grade from:
 - Seminar 1
 - Seminar 3
 - Written report on literature exercise
 - Oral presentation of literature exercise
 - Hand-in exercises
- No final grade will be computed until you have a reached a passing grade (3 or higher) for each of these
- Please note that you also need a passing grade from seminar 2 to complete the course

Schedule I

- 9 Lecture
 - L1, Nov 10, 15-17: Course information, course overview
 - L2, Nov 12, 10-12: Fundamentals, Gravity, Curvature (chapters 2-3)
 - L₃, Nov 1₃, 10-12: Metrics, Proper distance, Cosmic dynamics (chapters 3-4)
 - L4, Nov 17, 10-12: Single and Multiple component Universes (chapters 5-6)
 - L5, Nov 19, 10-12: Cosmological parameters and dark energy (chapters 7)
 - L6, Nov 20, 10-12: Dark matter (chapter 8)
 - L7, Dec 1, 10-12: CMBR (chapter 9)
 - L8, Dec 3, 13-15: BBNS, the early Universe, inflation (chapter 10, 11)
 - L9, Dec 11, 13-15: Structure formation (chapter 12)

Schedule II

- •2 Exercise sessions:
 - •E1, Nov 24, 13-15, Exercises 1-6
 - •E2, Dec 4, 10-12, Exercises 7-12

Schedule III

- 3 seminars
 - Seminar I: Nov 26, 15-17
 - Seminar II: Dec 15, 9-12 (Note: 3 hours!)
 - Seminar III: Jan 13, 13-15
- Oral presentation of literature review
 - Jan 14 & 15, 10-12 both slots may not be necessary
- Spare slot (in case something else gets cancelled):
 - Dec 17, 10**-**12

Schedule IV

- •Important dates to remember:
 - November 26: Seminar 1
 - December 15: Seminar 2
 - January 8: Deadline for written literature report
 - January 13: Seminar 3
 - January 14/15: Oral presentations
 - January 22: Deadline for hand-in exercises

Pretty crowded in January! Advice: Do as much work as possible already in November and December

How much time will I have to spend on this course?

My estimates:

- Attending classes: 15*2 h = 30 h ~ 4 days
- Studying textbook:
- 12 days (one chapter a day)
- Preparing for seminars:6 days (two days per seminar)
- Solving exercises (12 in-class exercises + 6 hand-ins): 6 days (3 exercises a day)
- Literature exercise: 5 days
 (3 days for written report + 2 for oral presenation)

Sum: 33 days, i.e. 6.6 weeks or 10 ECTS

Course Outline

- Lecture 1: Introduction
 - Formal stuff
 - Course outline
 - Cosmic epochs

Course Outline

- •Lecture 2: Basics
 - Cosmological principle
 - Cosmic expansion
 - Newton versus Einstein
 - Gravity = Curvature
 - Metrics

Course Outline

- •Lecture 3: Dynamics
 - Robertson-Walker metric
 - Proper distance
 - Computational tools:
 - Friedmann equation
 - Fluid equation
 - Acceleration equation
 - Equation of state
 - Cosmic dynamics

Course Outline

- Lecture 4: Towards a realistic cosmology
 - Dynamics with single and multiple components
 - Concordance cosmology (Benchmark model)
 - Fate of the Universe

Course Outline

- •Lecture 5: Cosmological parameters
 - Measuring cosmological parameters
 - Dark energy

 $\begin{array}{ccc} \mathsf{H}_0 & \mathsf{q}_0 & \mathsf{w}_\mathsf{DE} \\ \Omega_\Lambda & \Omega_\gamma & \kappa \\ & \Omega_\mathsf{M} \end{array}$

Course Outline

- •Lecture 6: Dark matter
 - Evidence for dark matter
 - Baryonic and non-baryonic dark matter
 - Spatial distribution
 - Cold dark matter (CDM)
 - Problems with CDM
 - Dark matter candidates
 - Possible detections
 - Alternatives to dark matter

Dark matter

Luminous matter

Course Outline

- Lecture 7: The Cosmic Microwave Background Radiation
 - Origin of the CMBR
 - The dipole anisotropy
 - Recombination and decoupling
 - Temperature fluctuations
 - Cosmological information extracted from the CMBR

Course Outline

- Lecture 8: Big Bang Nucleosynthesis, the early Universe, cosmic inflation
 - BBNS
 - Measuring primordial abundances
 - What happened to the antimatter?
 - Problems with a noninflationary Big Bang
 - Inflation
 - Grand Unified Theories

Course Outline

- •Lecture 9: Structure formation
 - Perturbation spectrum
 - · Jeans mass, Jeans length
 - Hot vs. cold dark matter
 - First light
 - Large scale structure
 - Cosmic reionization

The Big Bang Scenario

- The part of the Universe <u>observable to us today</u> was extremely hot, dense and small ≈ 14 Gyr ago
- The Universe expanded and cooled → cosmic epochs and events

The Planck time

 In extremely early Universe, gravity and quantum effects operate on same scale →
 General relativity no good anymore! Theory of quantum gravity necessary!

$$t_{Planck}$$
~10⁻⁴³ s

Prior to the Planck era: ????

Current Big Bang theory only describes what happens at t>t_{Planck}

Inflation

- Universe quickly expands by factor ~ 1030
- Inflation finished by $t\sim 10^{-32}$ s
- Solves the flatness, isotropy (horizon) and magnetic monopole problems of the standard Big Bang model
- Quantum fluctuations blown up to cosmic scales → seeds for large-scale structure formation later on

Phase transitions Transitions: Grand unification transition: t-10⁻³⁶ s Electroweak phase transition t-10⁻⁴² s Quark-hadron transition: t-10⁻⁶ Defects may have formed: Cosmic strings Monopoles Textures Primordial black holes Quark nuggets

Today

- t_o ≈ 13.7 Gyr
- Astronomical objects up to z≈10 have been detected
- The cosmic microwave background radiation has z ≈1100

Quite a few unsolved problems...

- What drove inflation?
- What is the dark matter?
- What is the dark energy?
 - How will the Universe end?
- What were the initial conditions?
 - Why is the Universe expanding?
 - Why is there something instead of nothing?
- \bullet Why is there more matter than antimatter?
- Is the Universe spatially infinite?
- What caused reionization?
- What came before the Big Bang?
- Are there parallel Universes?