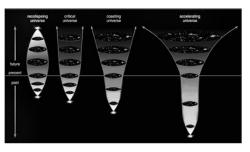
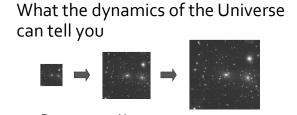
Cosmology 1FA209, 2015 Lecture 4: Cosmological models and the fate of the Universe

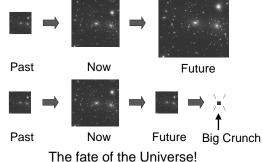


Outline

- Properties and fate of single-component Universes
 - Empty Universe
 - Flat Universe
 - Matter/Radiation/Lambda-dominated Universe
 - Einstein-de Sitter Universe
- Properties and fate of multiple-component Universes
 - Matter + curvature
 - Benchmark model
 - Other dark energy scenarios

Covers chapters 5 & 6 in Ryden

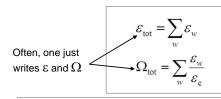




Density evolution (general)

- Friedmann equation + fluid equation + equation of state \rightarrow a(t), ε (t) or t(a), ε (a)
- •Problem: There are many components in the Universe →
 - Evolution complicated
 - Different components dominate evolution at different times

Multiple energy components



Remember:

w = 0 (non – relativistic matter)

w = 1/3 (radiation and relativistic matter)

w = -1 (cosmological constant)

w < -1/3 (dark energy) \rightarrow Positive acceleration

Density evolution

Fluid equation + eq. of state (see exercise session) \rightarrow

$$\varepsilon_{w}(a) = \varepsilon_{w,0} a^{-5(1+w)}$$

$$\begin{cases} w_{m} = 0 \implies \varepsilon_{m}(a) = \varepsilon_{m,0} a^{-3} \\ w_{r} = 1/3 \implies \varepsilon_{r}(a) = \varepsilon_{r,0} a^{-4} \\ w_{\Lambda} = -1 \implies \varepsilon_{\Lambda}(a) = \varepsilon_{\Lambda,0} \end{cases}$$

Intermission: What are you looking at?

The benchmark model

The currently favoured cosmological model:

 $Ω_M$ ≈ 0.3

 $\Omega_{\rm M} = \Omega_{\rm Non-baryons\,(CDM)} + \Omega_{\rm Baryons}$ \(\text{More on this in}\) $\Omega_{\text{Non-baryons (CDM)}} \approx 0.26$ $\Omega_{\mathsf{Baryons}} \approx \mathsf{0.04}$

the dark matter lecture

 $\Omega_{\Lambda} \approx 0.7$

 $\Omega_R \approx 8.4 \times 10^{-5}$

 $\Omega_{\rm R} = \Omega_{\rm CMB} + \Omega_{\rm v} + \Omega_{\rm starlight}$

 $\Omega_{\text{CMB}} \approx 5.0 \times \text{10}^{\text{-}5}$

 $\Omega_{\rm v}$ pprox 3.4 imes 10⁻⁵

 $\Omega_{\rm starlight} \approx {\rm 1.5 \times 10^{-6}}$

 Ω_{tot} = Ω_{M} + Ω_{Λ} + Ω_{R} pprox 1.0 ightarrowFlat Universe ($\kappa = 0$)

Why are single-component Universes relevant then?

$$w_m = 0 \implies \varepsilon_{\rm m}(a) = \varepsilon_{m,0} a^{-3}$$

 $w_r = 1/3 \implies \varepsilon_{\rm r}(a) = \varepsilon_{r,0} a^{-4}$
 $w_{\Lambda} = -1 \implies \varepsilon_{\Lambda}(a) = \varepsilon_{\Lambda,0}$

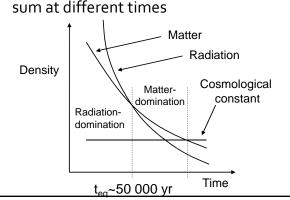
Values of $\Omega_{\mathrm{M}},\,\Omega_{\Lambda},\,\Omega_{\mathrm{R}}$ today + these relations \to $\epsilon_{\text{M}} \geq \epsilon_{\Lambda}$ at some point in the past (matter-dominated Universe)

 $\epsilon_{R} \geq \epsilon_{M}$ even further back

(radiation-dominated Universe)

The different epochs of the Universe can be approximated by single-component evolution

Different components dominate the sum at different times



The Milne Universe (empty)

Of pretty limited relevance for our Universe, but provides simple demonstration of how to derive current age of Universe, a(t) and t(z) from the Friedmann equation

$$H(t)^{2} = \frac{8\pi G}{3c^{2}} \varepsilon(t) - \frac{\kappa c^{2}}{R_{0}^{2}} \frac{1}{a(t)^{2}}$$

$$\varepsilon(t) = 0 \quad \Rightarrow$$

$$H(t)^{2} = -\frac{\kappa c^{2}}{R_{0}^{2}} \frac{1}{a(t)^{2}} \Rightarrow$$

$$\dot{a}(t)^{2} = -\frac{\kappa c^{2}}{R_{0}^{2}}$$

The Milne Universe (empty) II

 $\dot{a}(t)^2 = -\frac{\kappa c^2}{R_0^2}$

Empty, static Universe

 $\kappa = 0 \implies \dot{a}(t) = 0$

Empty, negatively curved

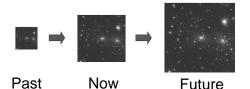
 $\dot{a}(t) = \frac{\mathrm{d}a}{\mathrm{d}t} = \pm \frac{c}{R_0}$

If expanding (not contracting) ⇒

Current age of Universe:

 $t_0 = \frac{R_0}{c}, \quad a(t) = \frac{t}{t_0}, \quad t(z) = \frac{t_0}{1+z}$

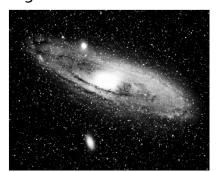
Fate of the Universe in a Milne Universe



Eternal, constant expansion ('Big Chill')

Future

Intermission: What are you looking at?



Proper distance in a Milne Universe

Proper distance from us to object which emitted light at t_c :

$$d_{p}(t_{0}) = c \int_{t_{\epsilon}}^{t_{0}} \frac{\mathrm{d}t}{a(t)}$$

$$a(t) = \frac{t}{t_0} \implies d_{p}(t_0) = ct_0 \int_{t_e}^{t_0} \frac{dt}{t} = ct_0 \ln \left(\frac{t_0}{t_e} \right)$$

$$t_e = \frac{t_0}{1+z} \Rightarrow d_p(t_0) = ct_0 \ln(1+z) = \frac{c}{H_0} \ln(1+z)$$

Flat, single-component Universes

For $w \neq -1$:

$$a(t) = \left(\frac{t}{t_0}\right)^{2/(3+3w)}$$

$$\varepsilon(t) = \varepsilon_0 \left(\frac{t}{t_0}\right)^{-2}$$

Important types of flat, single-component Universes

Radiation-only Universe (radiation-dominated epoch):

$$t_0 = \frac{1}{2H_0}, \quad a(t) = \left(\frac{t}{t_0}\right)^{1/2}$$

Matter-only Universe (matter-dominated epoch):

$$t_0 = \frac{2}{3H_0}, \quad a(t) = \left(\frac{t}{t_0}\right)^{2/3}$$

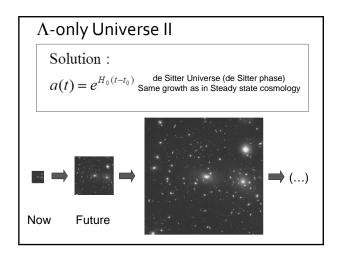
Λ-only Universe I

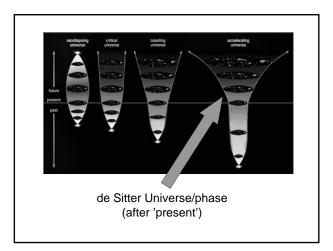
$$\Lambda$$
 has $w = -1 \implies$

$$\dot{a}^2 = \frac{8\pi G \varepsilon_{\Lambda}}{3c^2} a^2$$

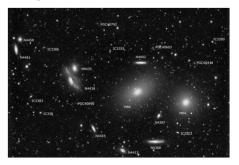
$$\dot{a}^2 = H_0^2 a^2 \quad \text{if} \quad$$

$$H_0 = \left(\frac{8\pi G\varepsilon_{\Lambda}}{3c^2}\right)^{1/2}$$





Intermission: What are you looking at?

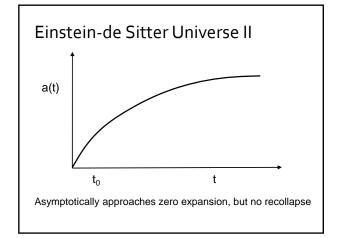


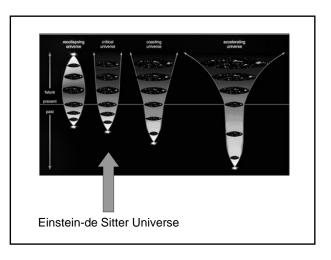
Einstein-de Sitter Universe I

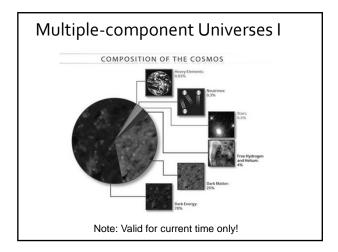
This served as the benchmark model up until the mid-1990s

- Flat (i.e. critical-density), matter-dominated Universe
- $\Omega_{\rm M}$ = 1.0, $\Omega_{\rm tot}$ = 1.0, κ = 0

$$t_0 = \frac{2}{3H_0}, \quad a(t) = \left(\frac{t}{t_0}\right)^{2/3}$$







Multiple-component Universes II

$$H(t)^{2} = \frac{8\pi G}{3c^{2}} \varepsilon(t) - \frac{\kappa c^{2}}{R_{0}^{2}} \frac{1}{a(t)^{2}}$$
Recall:
$$\varepsilon(t) = \varepsilon_{\mathrm{M}}(t) + \varepsilon_{\mathrm{R}}(t) + \varepsilon_{\Lambda}(t) + \dots$$

Multiple-component Universes III

For 3 components with arbitrary curvature, the FE may be rewritten:

$$\frac{H(t)^{2}}{H_{0}^{2}} = \frac{\Omega_{R,0}}{a(t)^{4}} + \frac{\Omega_{M,0}}{a(t)^{3}} + \Omega_{\Lambda,0} + \frac{1 - \Omega_{\text{tot},0}}{a(t)^{2}}$$

The 3 components Curvature

More components can easily be added as additional terms, as long as you know their a(t)-dependence

Multiple-component Universes IV

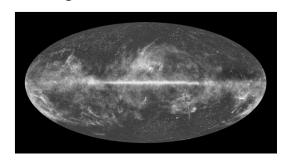
Time (from Big Bang):

$$t(a) = \frac{1}{H_0} \int_0^a \frac{\mathrm{d}a}{\left[\Omega_{R,0}a^{-2} + \Omega_{M,0}a^{-1} + \Omega_{\Lambda,0}a + (1 - \Omega_{\text{tot},0})\right]^{1/2}}$$

Lookback-time = t_0 -t(a)

Nasty integral! No simpel analytical solution in general case → Use numerical integration!

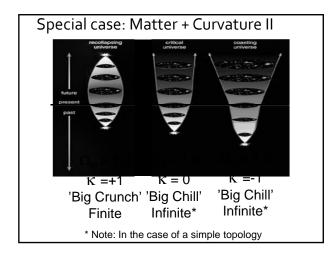
Intermission: What are you looking at?

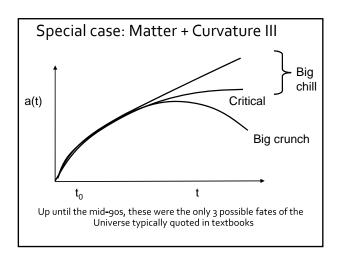


Special case: Matter + Curvature I

$$\frac{H(t)^2}{H_0^2} = \frac{\Omega_{\text{M},0}}{a(t)^3} + \frac{1 - \Omega_{\text{M},0}}{a(t)^2}$$

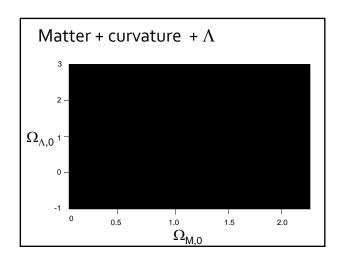
H(t)-evolution → Possible fates of Universe This is one of the hand-in exercises! (Note: Lots of help on page 85 in Ryden)





Intermission: What does "end of the Universe" actually mean?

- All life ends?
- All stars fade away?
- All black holes evaporate?
- All matter destroyed?
- •Space ends?
- •Time ends?



Properties of the benchmark model

- Matter-radiation equality:
 - a $\approx 2.8 \times 10^{-4}$
 - t ≈ 4.7×10⁴ yr
- Matter- Λ equality:
 - a ≈ o.75
 - •t≈9.8 Gyr
- •Now:
 - a = 1
 - $\bullet\,t\approx \textbf{13.7-13.8}\,Gyr$

