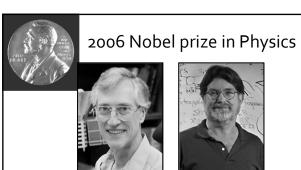
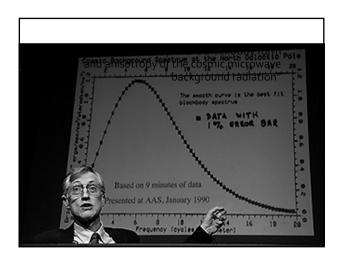

Cosmology 1FA209, 2015 Lecture 7: Cosmic Microwave Background Radiation



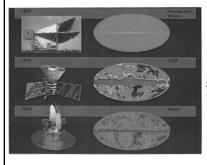
Outline

- Introduction to the CMBR
- History of CMBR research
- Support for the Big Bang model
- Properties of the CMBR
 - Temperature

 - The dipole anisotropySmall-scale temperature fluctuations
- Origin of the CMBR
 - Recombination
 - Decoupling
 - Last scattering surface
 - Small-scale temperature fluctuations
- Cosmological information


Covers chapter 9 in Ryden

John C. Mather NASA Goddard Space Flight Center Greenbelt, MD, USA


George F. Smoot University of California Berkeley, CA, USA

Cosmic Microwave Background Radiation (CMBR) - Quick Facts -

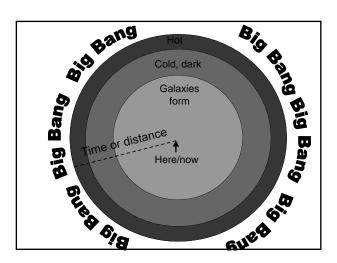
- Comes from all directions in the sky
 - •Black body spectrum with:
 - T_o≈ 2.73 K
 - Peak wavelength ≈ 2 mm
 - •Close to isotropic, except for:
 - Large-scale doppler (dipole) anisotropy due to our motion with respect to the CMBR
 - Small-scale temperature fluctuations due to density fluctuations at $z \approx 1100$

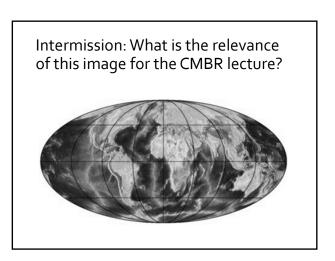
History of CMBR research I

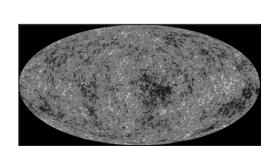
Nobel prize to Smoot and Mather for their work with COBE

History of CMBR research II

- 1934: First prediction of the existence of the CMBR
 - Tolman: Expanding Universe should be filled by thermal radiation from its hot past
- 1948: First prediction of the current CMBR temperature
 Gamow, Alpher & Herman: T₀ ≈ 5 K
- 1965: CMBR discovered by Wilson & Penzias
- Temperature measured to be $T_0 \approx 3.5 \text{ K}$



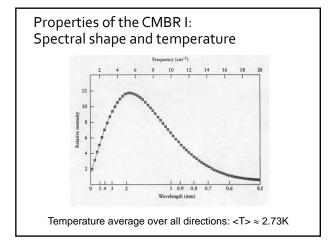

History of CMBR research III

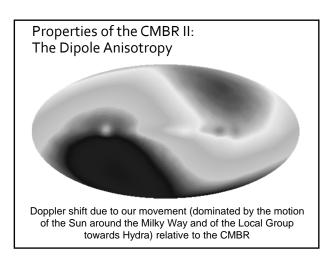

- •1992: COBE satellite
 - Close to perfect BB, with T \approx 2.73 K
 - Large-scale dipole
 - Small-scale temperature fluctuations (~10⁻⁵ K)
- Late 90s: MAXIMA & BOOMERanG balloons
 - Small-scale temperature and polarization variations
- 2001 2010: WMAP satellite
 - Full-sky maps of polarization and small-scale temperature
- 2009 2013: Planck satellite
 - Superior polarization measurements
 - Helps debunk claimed detection of gravitational waves from BICEP2 team

Why is there a CMB?

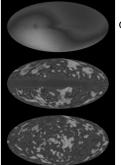
- Early Universe (t < 240 000 yr): Hot \rightarrow
 - Baryons ionized
 - Universe opaque to photons
 - •Photon-baryon plasma
- Cosmic expansion →
 - Universe neutral at t~240 000 yr
 - Universe transparent to photons

Support for the Big Bang model


- •Expansion of the Universe
- •The primordial abundances of light elements
- •The age consensus
- •The CMBR

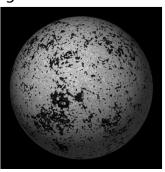

The CMBR as support for the Big Bang model I

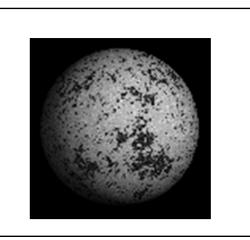
- Existence of the CMBR:
 - Richard Tolman (1934): Expanding Universe should be filled with thermal radiation from hot past
 - CMBR ≈ "Afterglow of the Big Bang"
 - Difficult to understand in Steady State-type cosmologies

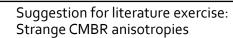

The CMBR as support for the Big Bang model II

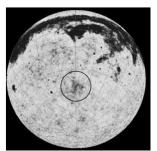
- •Temperature of the CMBR:
 - T_o = 2.73 K fits Big Bang model (but note: the a priori prediction was <u>not</u> this precise)
 - Big bang model predicts: $T(z) = (1+z)T_o$ Confirmed by measurements up to $z \approx 3$
- Small-scale temperature anisotropies:
 - Results in cosmological parameter values consistent with other methods

Properties of the CMBR III: Small-scale temperature fluctuations

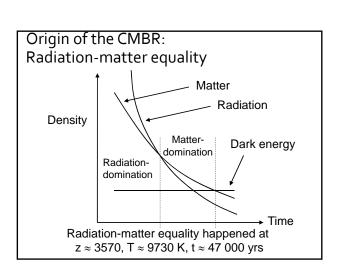



Overall CMBR, including Doppler dipole


CMBR with dipole subtracted


CMBR with Milky Way and nearby structure subtracted → Small-scale temperature fluctuations (RMS 10⁻⁵ K) Very important for cosmological model fitting!

Intermission: What is this image showing?



The "Axis of evil" & the cold spot: Signatures of non-standard cosmology?

Origin of the CMBR: Important Concepts

- •Radiation-matter equality
- Photon decoupling
- •Recombination
- Last scattering surface
- •The Sachs-Wolfe effect
- Acoustic peaks

Origin of the CMBR: Decoupling I

During radiation-domination, and during a short period in the matter-dominated era, photons kept the atoms ionized

Thomson scattering:

$$\gamma + e^{-} \rightarrow \gamma + e^{-}$$

Mean free path of photons:

$$\lambda = \frac{1}{n_{\rm e}\sigma_{\rm e}}$$

Origin of the CMBR: Decoupling II

Rate of scattering interactions for this process:

$$\Gamma = \frac{c}{\lambda} = n_{\rm e} \sigma_{\rm e} c$$

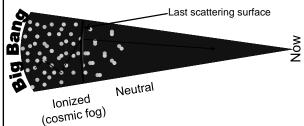
This process freezes out when:

$$\Gamma < H$$

This leads to decoupling of photons from the baryonic plasma

→ Baryons and photons evolve separately

Origin of the CMBR: Recombination


At around the same time, the expansion of the Universe causes the energy of the photons to drop below 13.6 eV

→ Hydrogen starts (re)combining and the Universe goes from ionized to neutral, which speeds up the decoupling

Recombination happened at $z \approx 1370$, $T \approx 3740$ K, $t \approx 240000$ yrs

Photon decoupling happened at $z \approx 1100$, $T \approx 3000$ K, $t \approx 35000$ yrs

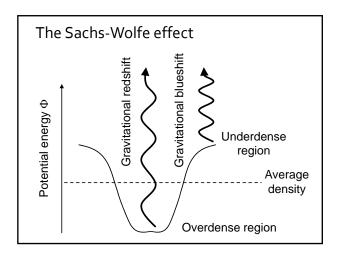
Origin of the CMBR: Last Scattering Surface

CMBR photons reach us from a fog-like 'wall'. This last scattering surface is located at $z \approx 1100$, $T \approx 3000$ K, $t \approx 350$ 000 yrs

Intermission: Wait... What?

Statements that get confusing when combined out of context:

- Plasma (ionized gas) is non-transparent
- The Universe was non-transparent prior to decoupling (t~380 000 yr) because it was ionized until then
- The Universe was reionized at an age of ≈1 Gyr
- The CMBR photons from the decoupling era has reached us without scattering

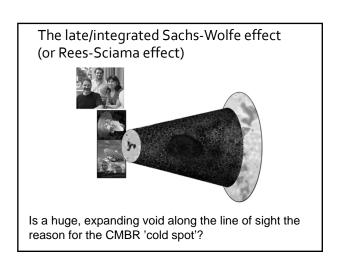

Origin of the CMBR: Small-scale temperature fluctuations

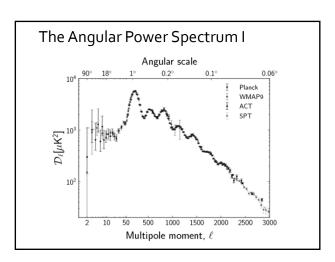
Density fluctuations present at the time of last scattering are evident as spatial temperature fluctuations in the CMBR

Recall:
$$\theta = \frac{l}{d_A}$$

In the benchmark model, the horizon distance at z_{CMBR} corresponds to $\theta_{\text{H}}{\approx}\text{1}^{\circ}$

- On scales $\theta > \theta_H$: Primordial CDM density fluctuations
- On scales $\theta \! < \! \theta_H \! :$ Acoustic oscillations in the photon-baryon fluid



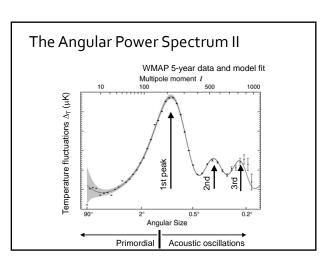

The late/integrated Sachs-Wolfe effect (or Rees-Sciama effect)

The gravitational red/blueshift of CMBR photons due to structure along the line of sight towards the last scattering surface.

Static potential well → Blueshift climbing in, redshift climbin out (no net effect)

But net redshifts/blueshifts will happen if the potential well gets shallower/deeper while crossing!

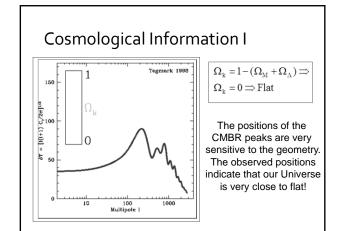
The Angular Power Spectrum II

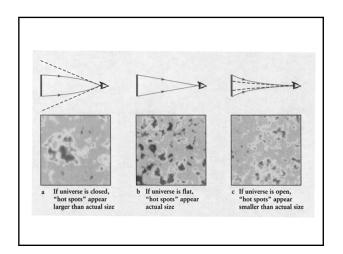

When studying CMBR temperature fluctuations as a function of angular scale, one usually plots:

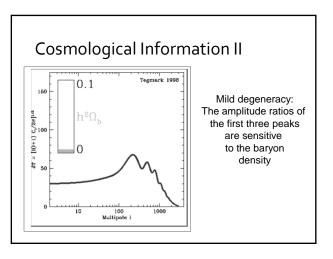
$$\Delta_T = \left(\frac{l(l+1)}{2\pi}C_l\right)^{1/2} \langle T \rangle$$

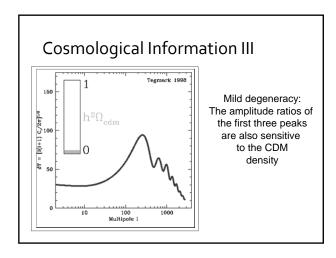
where:

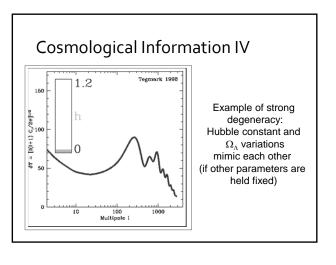
l is the multipole (note: high l means small θ)


 C_i is the angular correlation function of $\frac{\delta T}{T}$




"The sound of the Big Bang"


- The vibrations (sounds) that permeated the cosmos at the time when the CMBR was emitted can be turned into an audible sound if raised about 50 octaves
- Theoretical calculations can also predict how this sound changed in the first million years


John Cramer's homepage: http://faculty.washington.edu/jcramer/BBSound.html

