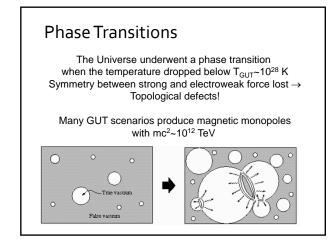
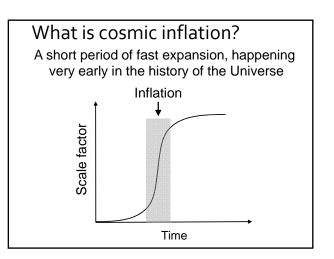
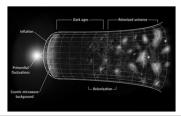


Outline


- Grand unificiation
- Cosmic inflation
- Origin of the elements
- Big Bang Nucleosynthesis
- Measuring elemental abundances


Covers chapters 10 & 11 in Ryden

Grand Unification II


- Electroweak unification experimentally confirmed in late 1970s → Nobel prize in physics to Maxwell, Weinberg, Salam & Glashow for electroweak theory
- •GUT happens at E_{GUT}~10¹² TeV
- LHC reaches ~ 10 TeV → Experimental confirmation of GUT is not gonna happen soon...

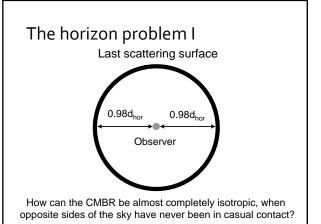
Why do we need inflation?

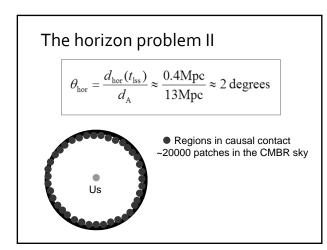
- •To solve:
 - Flatness problem
 - Horizon problem
 - Magnetic monopole problem
- To provide the seeds for structure formation

The flatness problem I

Observationally:

 $|1 - \Omega_0| \le 0.1$

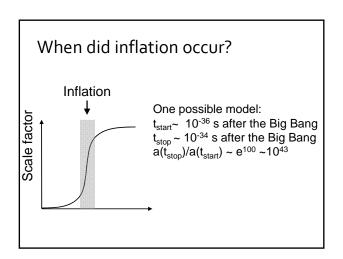

One can show that this implies, at the Planck time:

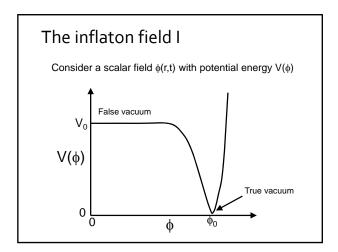

 $\left|1 - \Omega_{\text{Planck}}\right| \le 10^{-60}$

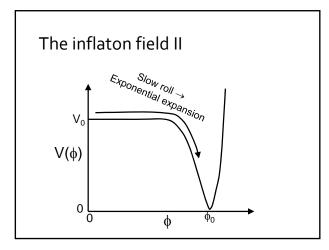
Hence, if the Universe is close to flat now,

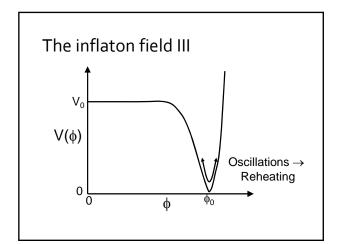
it was extremely close to flat in the past.

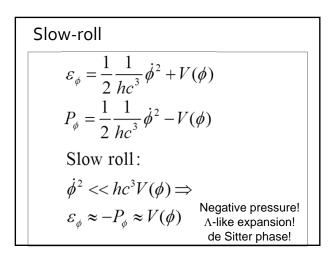
Why is the Universe so close to flat? If this is a coincidence, it very, very improbable!

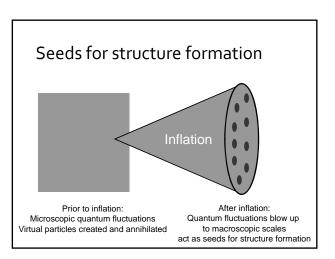



The magnetic monopole problem I

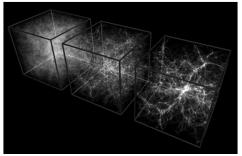

Magnetic monopoles: zero-dimensional objects which act as isolated north or south poles of a magnet


Many GUT models predict huge numbers of these! While subdominant at creation, they would soon come to dominate the energy density of the Universe


Problem: No such objects have ever been observed! Where are the magnetic monopoles?



Reheating


If the Universe expands by a factor of $\sim e^{100} \rightarrow$ Temperature drops by e^{-100} and the radiation energy denstiy gets extremely small

How come it's not small after inflation then?

Oscillations of ϕ around $\phi_0 \rightarrow$ Some of the energy of the inflaton field are being carried away by radiation These photons *reheat* the Universe Hence, no shortage of photons after inflation!

Seeds for structure formation II

Current Universe Primordial seeds have generated very complicated structure

Inflation as a solution to the flatness problem I

The acceleration equation:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2} (\varepsilon + 3P)$$

During inflation, the Universe is temporarily dominated by a component with P < - ϵ /3 (i.e. w<-1/3), giving positive acceleration. One often assumes a *cosmological constant* $\Lambda_{\text{inflation}}$ to be responsible. Note: This is a constant very different from the Λ driving the cosmic acceleration today. $\Lambda_{\text{inflation}} \sim 10^{107} \, \Lambda \dots$

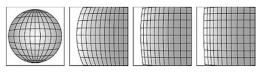
Inflation as a solution to the flatness problem II

Hubble parameter and scale factor during inflation:

$$H_{\text{inflation}} = \left(\frac{\Lambda_{\text{inflation}}}{3}\right)^{1/2}$$
$$a(t) \propto e^{H_{\text{inflation}}t}$$

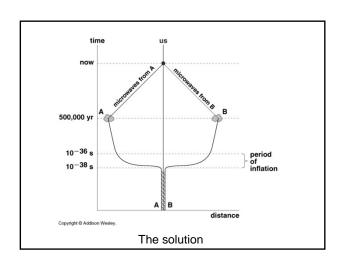
Number of e-foldings during inflation:

Inflation as a solution to the


$$N = H_{\text{inflation}} (t_{\text{stop}} - t_{\text{start}})$$

$$N \sim 100$$

Inflation as a solution to the flatness problem III


$$\begin{split} & \left| 1 - \Omega(t_{\text{stop}}) \right| = \mathrm{e}^{-2N} \left| 1 - \Omega(t_{\text{start}}) \right| \\ & \text{Example}: \\ & \left| 1 - \Omega(t_{\text{start}}) \right| \approx 1 \Rightarrow \left| 1 - \Omega(t_{\text{stop}}) \right| \approx 0 \end{split}$$

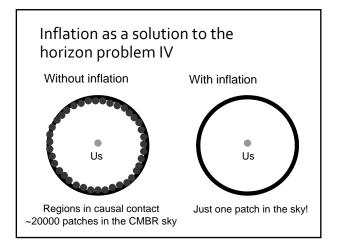
Inflation makes a curved Universe flat!

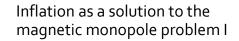
A deposite of the universe. age of universe We can see gas at points A and B before they knew about each other. We can see gas at points A and B before they knew about each other. Gas at point A has received signals from this part of the universe. Gas at point B has received signals from this part of the universe.

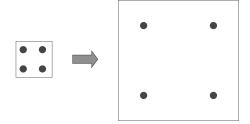
The horizon problem

Inflation as a solution to the horizon problem II

Horizon before and after inflation:


$$d_{\text{hor}}(t_2) = c \int_{t_1}^{t_2} \frac{dt}{a(t)}$$


Before inflation:

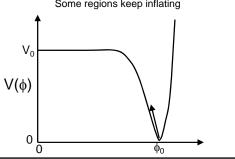

$$d_{\text{hor}} = 2ct_{\text{start}} \sim 6 \times 10^{-28} \text{m}$$

After inflation:

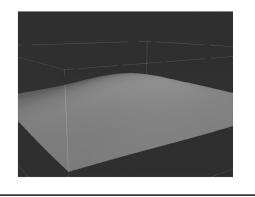
$$d_{\text{hor}} \approx e^N 3ct_{\text{start}} \sim 2 \times 10^{16} \text{m}$$

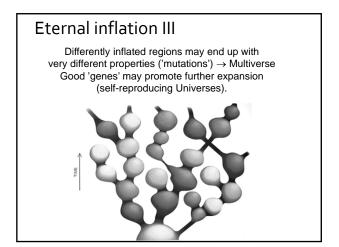
Expansion dilutes the number densities of objects, and inflation did this extremely efficiently

Inflation as a solution to the magnetic monopole problem II


At the end of inflation:

$$n_{\text{monopoles}}(t_{\text{stop}}) \sim e^{-300} n_{\text{monopoles}}(t_{\text{GUT}})$$


A realistic number density of monopoles at the GUT epoch would correspond to less than one monopole within the volume spanned by the last scattering surface


Eternal inflation I

Once the inflaton field has come to rest at ϕ_0 , inflation ends. But in some regions of space equantum fluctuations can make the inflation field move up the potential again \rightarrow Some regions keep inflating

Eternal inflation II

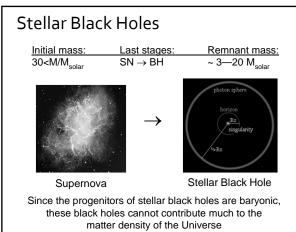
Eternal inflation IV

Primordial Black Holes

 M_{Planck} - 10 $^{15} M_{solar}$

Example:

• High-density regions in the early Universe


(t « 1 s) may collapse into primordial black

• Remains a viable candidate for the cold dark matter: Ω_{PBH} could be ~0.3!

• PBHs could in principle form with masses from

 $\rm M_{PBH}{\sim}10^{-8}~M_{solar}$ (mass of the Moon) would have a size (event horizon) of R ${\sim}0.1~mm$

- •Quantum fluctuations in $\phi \rightarrow$ Future-eternal inflation Inflation will always continue (somewhere)
- Past-eternal inflation models also exist: Revives the perfect cosmological principle! The interior of each inflating bubble may be described by the Big Bang theory, but the multiverse as a whole has been around forever

Intermission: What are you made of?

"We are stardust, billion year old carbon
We are golden, caught in a devil's bargain
And we've got to get ourselves back to the garden"
Joni Mitchell: Woodstock (1969)

The Elements

Atomic nuclei:

Z = Number of protons

N = Number of neutrons

A = Nucleons = Mass number = Z + N

¹H = Normal hydrogen nucleus (proton)

²H = Deuterium (hydrogen isoptope)

⁴He = Normal Helium

X, Y, Z

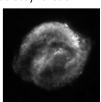
- •X: Mass fraction of Hydrogen (most common element in the Universe). Here, now: X ≈ 0.71
- Y: Mass fraction of Helium (second most common element in the Universe)
 Here, now: Y ≈ 0.27
- •Z: Mass fraction of all heavier elements combined. Also known as "Metallicity". Here, now: Z ≈ 0.02

Abundances in Astronomy

 $[A/B] = \log_{10} \left(\frac{\text{(number of A atoms/number of B atoms)}_{\text{object}}}{\text{(number of A atoms/number of B atoms)}_{\text{cum}}} \right)$

- Common examples:
 - [Fe/H], [O/H] These two are often carelessly referred to as 'metallicities'
- •[Fe/H] = -1 means that the object you're looking at only has 10% Iron (relative to hydrogen) compared to the Sun.

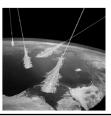
The Light Elements


Created during Big Bang Nucleosynthesis, roughly in the first three minutes after the Big Bang:

- ²H (Deuterium, D), ³H (Tritium)
- •3He, 4He
- •6Li, 7Li
- 7Be, 8Be (Unstable, decays back into Li)

Note: BBNS required to explain abundances of ⁴He and Deuterium!

The Heavy Elements


- •Essentially all elements with A>7 are created through
 - Stellar nucleosynthesis
 - Supernova nucleosynthesis

Fusion: $H \rightarrow He \rightarrow Heavier$ elements

Cosmic Ray Spallation

- Nucleosynthesis due to high-energy impacts of cosmic rays
- Can form ³He + certain isotopes of Li, Be, B, Al, C, Cl, I and Ne

Important BBNS Reactions I: Proton-neutron freezeout

Consider the Universe at $t \approx 0.1 \text{ s...}$

Pair production:

 $\gamma + \gamma \Leftrightarrow e^- + e^+$

n and p are held in equlibrium with each other:

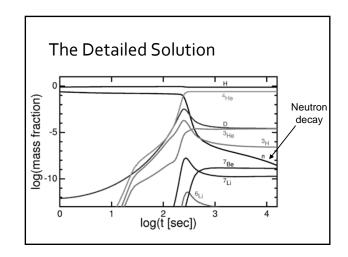
 $n + \nu_e \iff p + e^-$

 $n + e^+ \Leftrightarrow p + \overline{V}_*$

Neutrinos freeze out of these reactions at t ~1 s \rightarrow Neutron-to-proton ratio frozen at $n_n/n_p \approx 0.2$ Then follows neutron decay:

 $n \Rightarrow p + e^- + \overline{\nu}_e$

Important BBNS Reactions II: Deuterium and Helium synthesis


Consider the Universe at t ≈ 2—300 s...

$$p + n \Leftrightarrow d + \gamma$$

The rightward direction starts to dominates once the photon temperature has dropped below the 2.22 MeV binding energy of Deuterium. Serious production of D does not start until t $\approx 300~\text{s}.$

Once we have Deuterium, several routes allow the formation of Helium:

$$\begin{split} d+n & \longrightarrow H^3 + \gamma & d+d & \longrightarrow He^3 + n & d+d & \longrightarrow He^4 + \gamma \\ H^3+p & \longrightarrow He^4 + \gamma & d+d & \longrightarrow H^3 + p \\ d+p & \longrightarrow He^3 + \gamma & H^3+d & \longrightarrow He^4 + n \\ He^3+n & \longrightarrow He^4 + \gamma & He^3+d & \longrightarrow He^4 + p \end{split}$$

The Beryllium Bottleneck

• No stable nuclei with A=8 \rightarrow Prevents formation of heavier elements during BBNS

Even though you can form:

 $^{4}\text{He}+^{4}\text{He} \Longrightarrow ^{8}\text{Be}$

⁸Be will decay back into He after just 3×10⁻¹⁶s

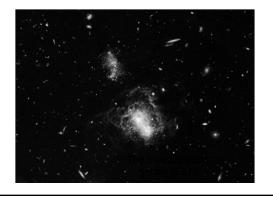
Yet we know that the Universe has somehow managed to make heavier elements...

The Beryllium Bottleneck II How do you make carbon? Solution: The Triple-Alpha process can take place in stars because of high temperatures (fast fusion of Helium) The Beryllium Bottleneck II How do you make carbon? Solution: The Triple-Alpha process can take place in stars because of high temperatures (fast fusion of Helium) Proton Proton Proton Neutron

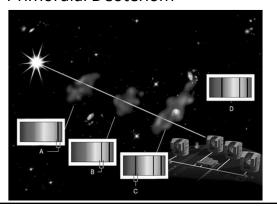
The Beryllium Bottleneck III

Triple-Alpha works because ⁴He, ⁸Be and ¹²C happen to have finely tuned energy levels.

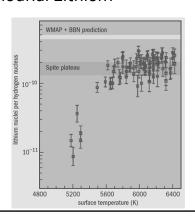
Fred Hoyle (1950s) predicted a so far unknown excited level of ¹²C, to explain why Carbon-based entities such as ourselves exist. Experimentalists later proved him right!



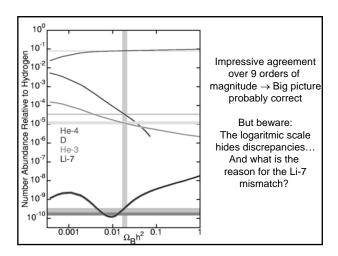
Primordial Abundances


To test BBNS, one needs to measure the primordial abundances of the light elements, i.e. measure the abundances in environments unaffected by chemical evolution

Helium: Low-metallicity HII regions
Deuterium: Quasar absorption lines
Lithium: Low-metallicitiy stars


Primordial Helium

Primordial Deuterium


Primodrial Lithium

BBNS – A Big Bang Success Story

- Big Bang explains primordial abundances of the light elements
- The abundances of the light elements agree with predictions over 9 orders of magntiude!
- \bullet The resulting $\Omega_{\rm b}$ is in accord with the result from other methods

This is how the success story is usually told – but there may be more to this than meets the eye...

