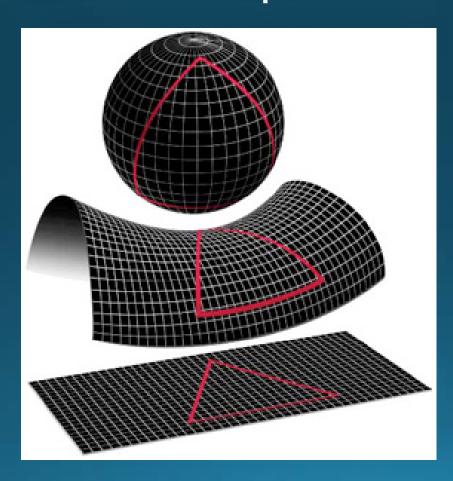
Cosmology 1FA209, 2016 Lecture 2: The cosmological principle and cosmic expansion



Outline

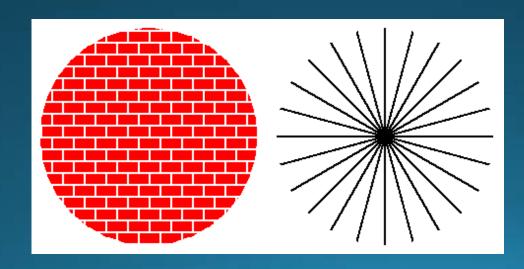
- The cosmological principle:
 - Isotropy
 - Homogeneity
- Big Bang vs. Steady State cosmology
- Redshift and Hubble's law
- Scale factor, Hubble time, Horizon distance
- Olbers' paradox: Why is the sky dark at night?
- Particles and forces
- Theories of gravity: Einstein vs. Newton
- Cosmic curvature

Covers chapter 2 + half of chapter 3 in Ryden

The Cosmological Principle I

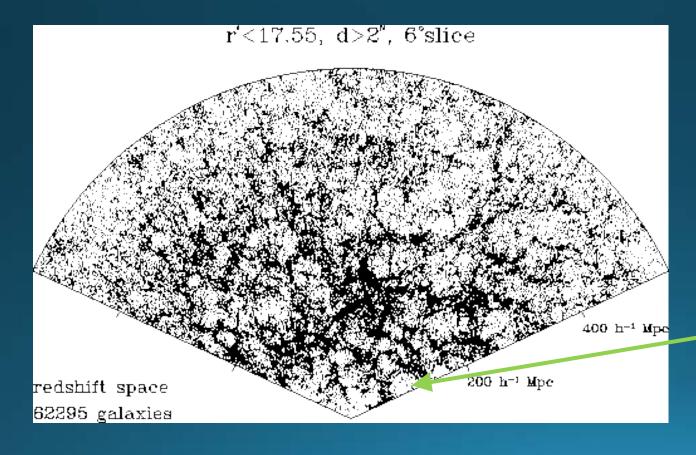
- •Modern cosmology is based on the assumption that the Universe is:
 - •Homogeneous
 - •lsotropic

The cosmological principle



The Cosmological Principle II

•These tenets *seem* to hold on large scales (>100 Mpc), but definitely not on small



Voidstypically70 Mpc across

1 Gpc/h Millennium Simulation 10.077.696.000 particles (z=0)

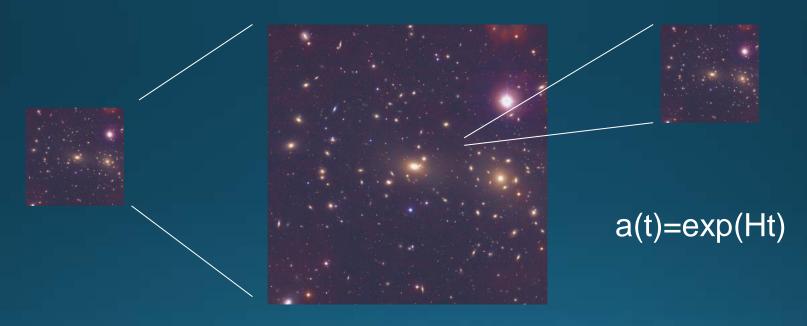
The Perfect Cosmological Principle

- In this case, one assumes that the Universe on large scales is:
 - Homogeneous
 - Isotropic
 - Non-evolving

This is incompatible with the Big Bang scenario, but the *Steady State model* (popular in the 1940-1960s) was based on this idea

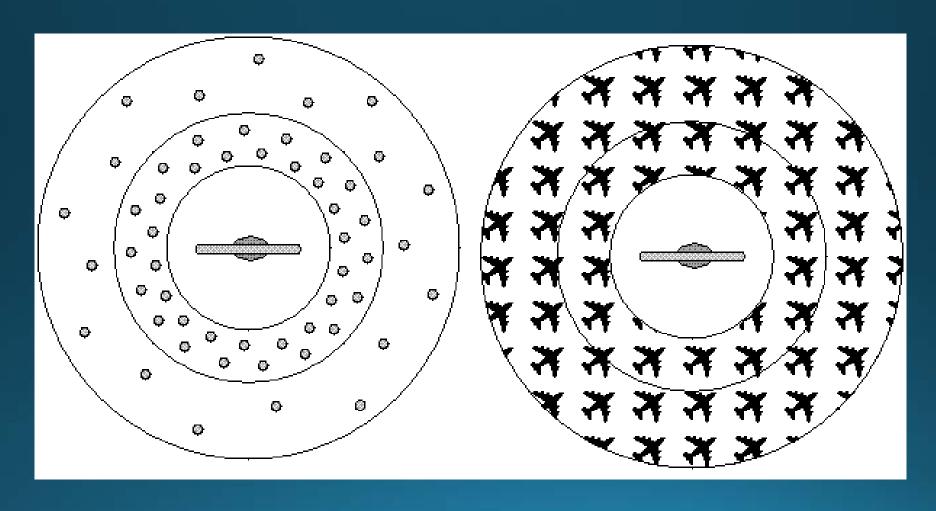
Steady State Cosmology

Universe continuously expands, but due to continuous creation of matter, no dilution occurs → Steady State, no hot initial Big Bang and no initial singularity...

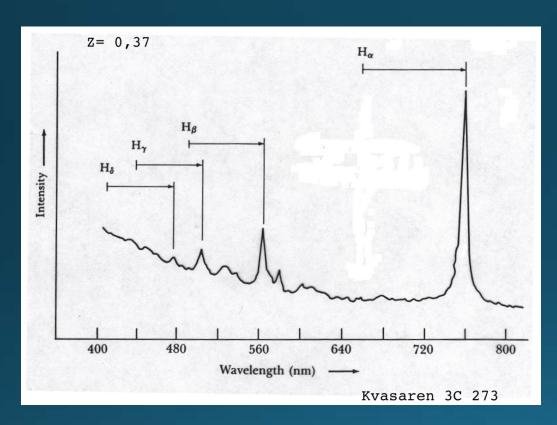


... But this cosmology fails to explain the CMBR, T_{CMBR}(z), the production of light elements and the redshift evolution of galaxies & AGN

Intermission: Do these Universes obey the cosmological principle?



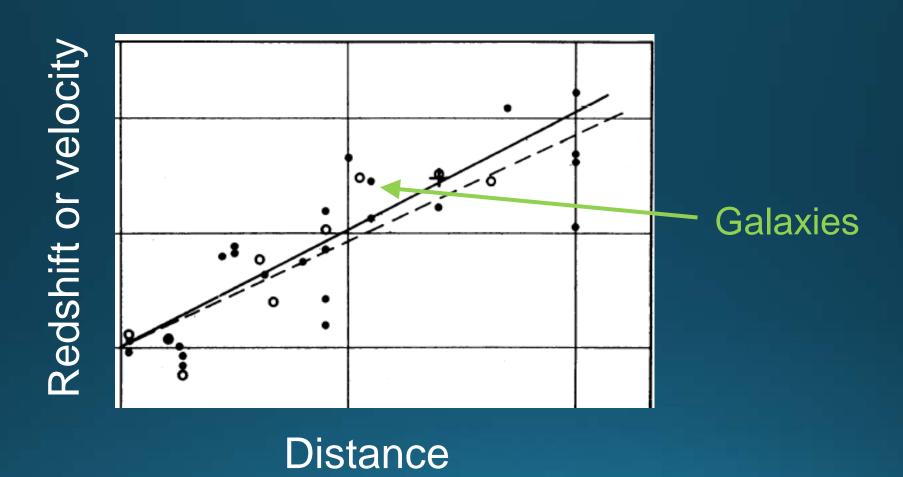
Redshift



Definition of redshift:

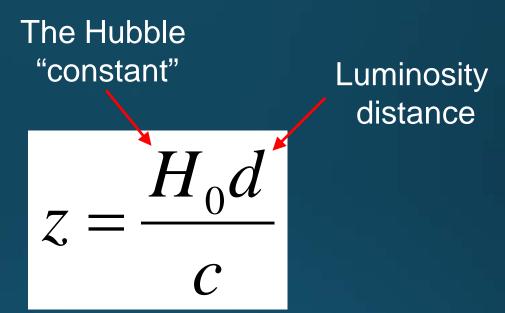
$$z = \frac{\lambda_{obs} - \lambda_{em}}{\lambda_{em}}$$

Hubble's law I



Hubble's law II

Hubble's law:

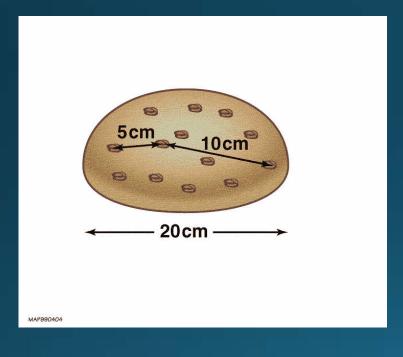


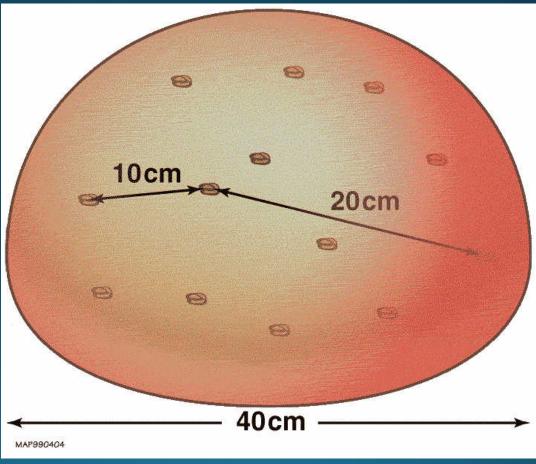
In observational astronomy, the term recession velocity, v, occurs frequently:

At low z:

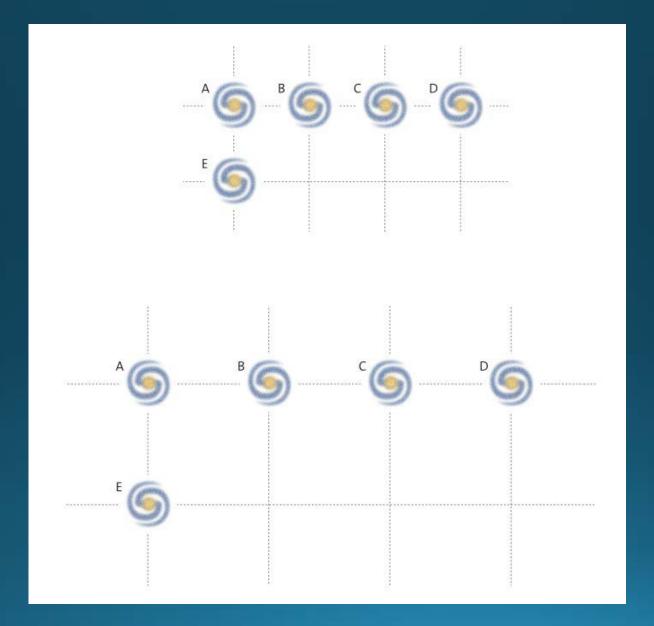
$$z \approx \frac{v}{c} \rightarrow v = H_0 d$$

Expansion of the Universe I





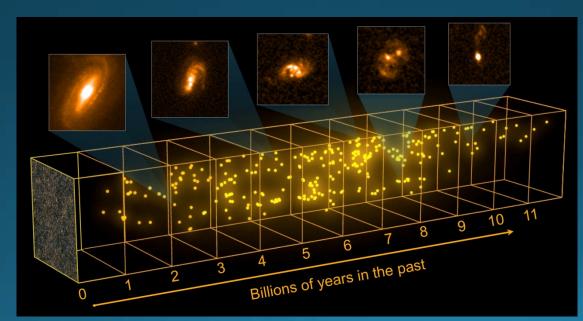
Expansion of the Universe II



Redshift and distance I

- Low redshift (z≈o) corresponds to:
 - Small distance (local Universe)
 - Present epoch in the history of the Universe
- High redshift corresponds to:
 - Large distance
 - Earlier epoch in the history of the Universe

Low redshift



High redshift

Redshift and distance II

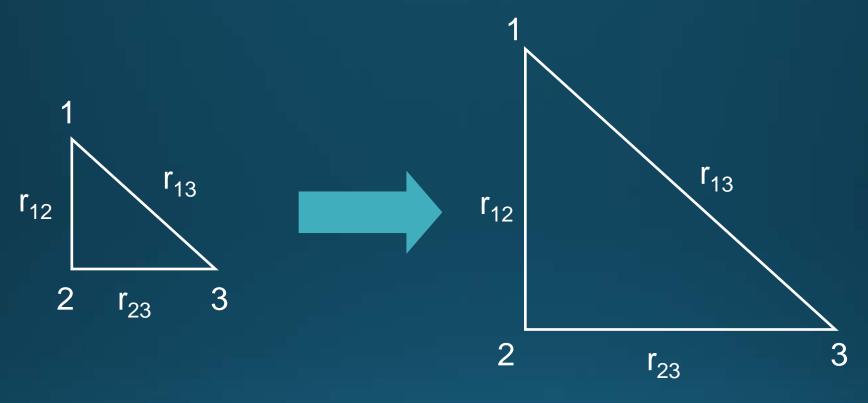
•But beware:

- At low redshift, Doppler components coming from peculiar motions may be substantial – must be corrected for before d is derived from z or v
- The redshift coming from cosmic expansion is not a Doppler shift – don't treat it like one!
- The linear version of Hubble's law is only appropriate at z<0.15 (at 10% accuracy)

Intermission

z ≈ -0.001 What does it mean?

Scale factor



Time t (earlier)
Scale factor a(t)

Time t_0 (now) Scale factor $a(t_0)=1$

$$r_{12}(t) = a(t)/a(t_0) r_{12}(t_0) = a(t) r_{12}(t_0)$$

 $v_{12}(t) = a'/a r_{12}(t)$

Scale factor and redshift

Cosmic scale factor today (at t₀)

— can be set to $a_0=1$

$$1+z=\frac{a_0}{a}=\frac{1}{a}$$

Cosmic scale factor when the Light was emitted (the epoch corresponding to the redshift z)

The Hubble "constant"

$$H_0 \approx 72\pm 5 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ [s}^{-1]}$$

Today

Errorbars possibly underestimated...

Note: Sloppy astronomers often write km/s/Mpc...

In general:

$$H \equiv \frac{\dot{a}}{a}$$

Not a constant in our Universe!

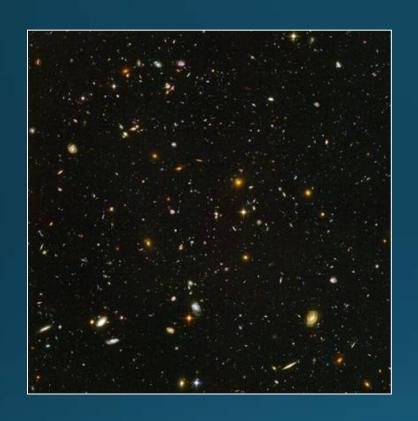
Hubble time

In the case of constant expansion rate, the Hubble time gives the age of the Universe:

$$t_{\rm H} = \frac{1}{H_0} \approx 14 \,\rm Gyr$$

In more realistic scenarios, the expansion rate changes over time, but the currently favoured age of the Universe is still pretty close – around 13—14 Gyr.

Olbers' paradox I



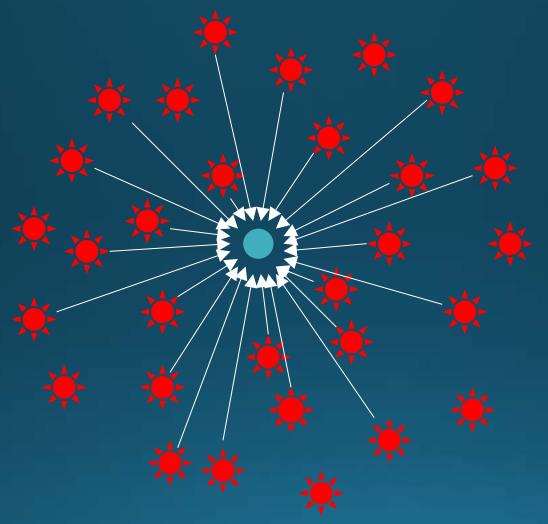
"Why is the sky dark at night?" (Heinrich Olbers 1926)

If the Universe is:

- Spatially infinite (i.e. infinite volume)
- Infinitely old and unevolving
- then the night sky should be bright!

Intermission: What does this have to do with Olbers' paradox?

Olbers' paradox III



Planet Earth surrounded by stars in an infinte, unevolving Universe

Olbers' paradox IV

Main solution: The Universe has finite age
The light from most stars have not had time to reach us!

Horizon distance

- Horizon distance = Current distance to the most faraway region from which light has had time to reach us
- This delimits the causally connected part of the Universe an observer can see at any given time
- Horizon distance at time t₁:

$$d_{\text{hor}}(t_1) = c \int_{t=0}^{t_1} \frac{\mathrm{d}t}{a(t)}$$

Most realistic scenarios give:

 $d_{hor}(t_o) \sim c/H_o$ (the so-called Hubble radius)

Particles and forces I

 The particles that make up the matter we encounter in everyday life:

Since most of the mass of 'ordinary matter' is contributed by protons and neutrons, such matter is often referred to as *baryonic*. Examples of mostly baryonic objects: Planets, stars, gas clouds (but not galaxies or galaxy clusters)

Particles and forces II

- Other important particles (for this course):
 - Photon, γ Massless, velocity: c
 - Neutrinos, $v_e v_\mu v_\tau$ ~eV (?), velocity close to c Interacts via weak nuclear force only

The four forces of Nature

- Strong force
 - Very strong, but has short range (~10⁻¹⁵ m)
 - Holds atomic nuclei together
- Weak force
 - Weak and has short range
 - Responsible for radioactice decay and neutrino interactions
- Electromagnetic force
 - Weak but long-range
 - Acts on matter carrying electric charge
- Gravity
 - Weak, very long-range and always attractive

On the large scales involved in cosmology, gravity is by far the dominant one

Newtonian gravity

- Space is Euclidian (i.e. flat)
- Planet are kept in their orbits because of the gravitational force:

$$F = -\frac{GM_g m_g}{r^2} - \frac{Gravitational}{mass}$$

• The acceleration resulting from the gravitational force:

$$F = m_i a$$
 Inertial

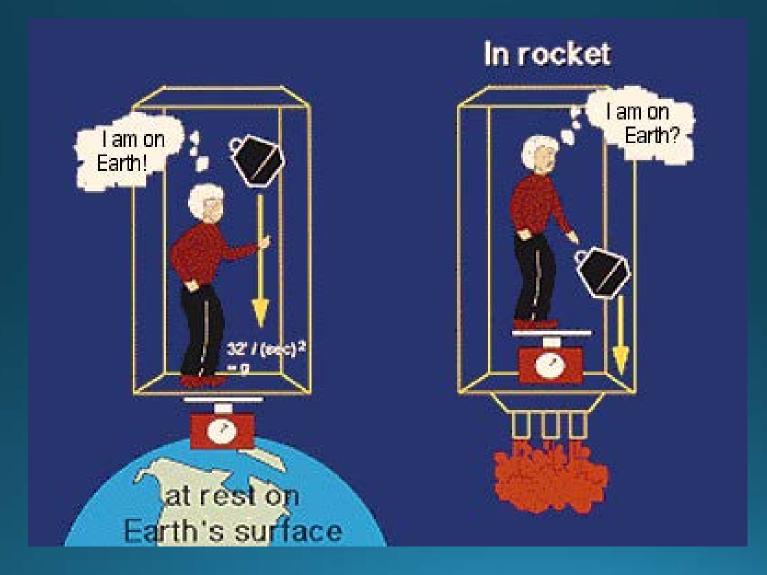
Equivalence Principle

• Gravitational acceleration towards an object with mass M_q is:

$$a = -\frac{GM_g}{r^2} \left(\frac{m_g}{m_i} \right)$$

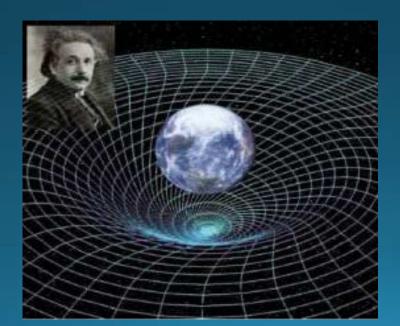
- Empirically $M_g = M_i$ (to very high precision)
- The equality of gravitational mass and inertial mass is called the equivalence principle
- In Newtonian gravity, $M_g = M_i$ is just a strange coincidence, but in General Relativity, this stems from the idea that masses cause curvature of space

Intermission: What does this have to do with the equivalence principle?

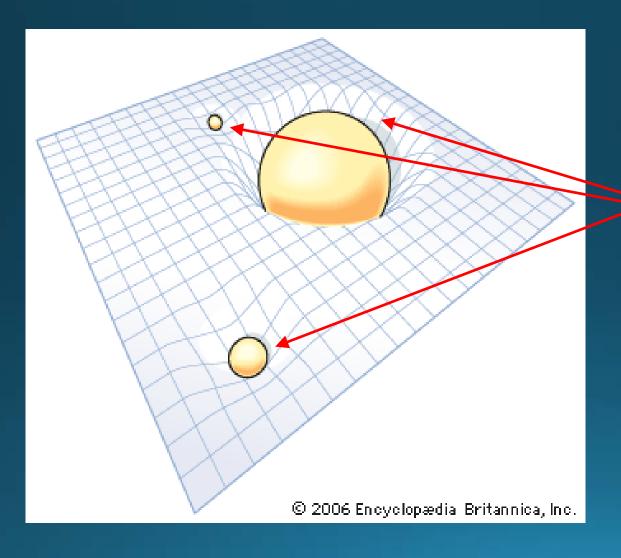


General Relativity

- 4D space-time
- Mass/energy curves space-time
- Gravity = curvature
- Pocket summary:
 - Mass/energy tells space-time how to curve
 - Curved space-time tells mass/energy how to move



Small-scale curvature

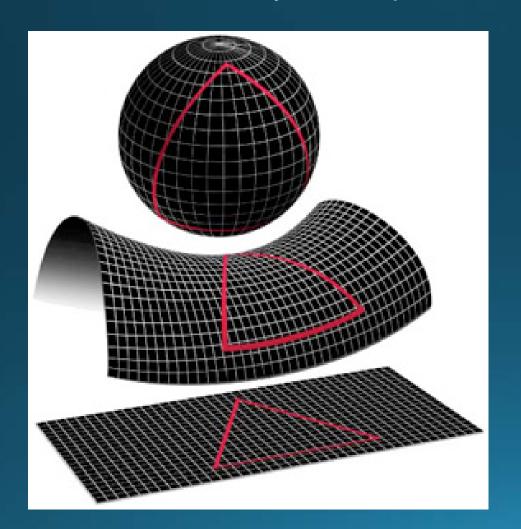


Small-scale distortions caused by astronomical objects

What about the large-scale curvature?

Global Curvature I

In the world models of general relativity, our Universe may have spatial curvature (on global scales)



Positive curvature

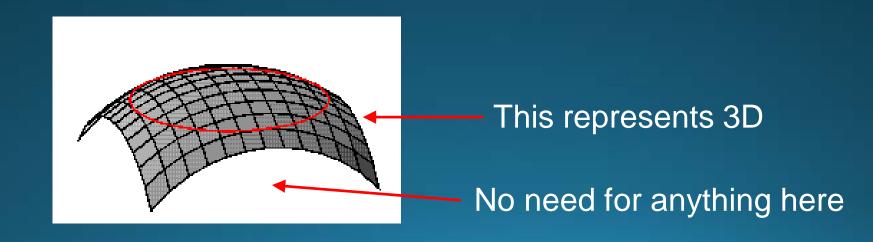
Negative curvature

Zero curvature (flat/Euclidian space)

Global Curvature II

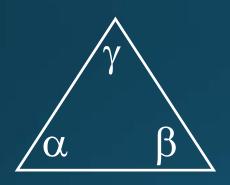
Very tricky stuff...

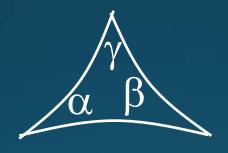
- This an intrinsic curvature in 3D space
- Note: No need for encapsulating our 3D space in 4D space to make this work

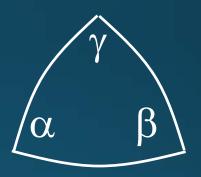


Global Curvature III

Angles in curved spaces







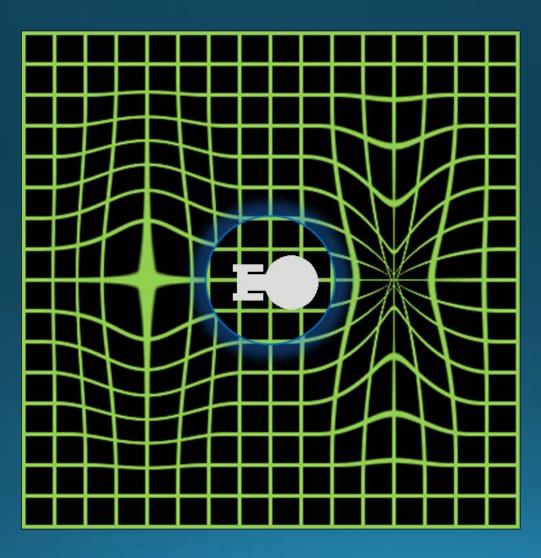
Flat:
$$\alpha + \beta + \gamma = 180^{\circ}$$

Negative:
$$\alpha + \beta + \gamma < 180^{\circ}$$

Positive:
$$\alpha + \beta + \gamma > 180^{\circ}$$

Intermission: What is this figure meant to illustrate?

Intermission: What is this figure meant to illustrate?



Metrics I

- Metric: A description of the distance between two points
- Metric in 2 dimensional, flat space:

$$ds^2 = dx^2 + dy^2$$
 (Pythagoras)

Metric in 3 dimensional, flat space:

$$ds^2 = dx^2 + dy^2 + dz^2$$

Metrics II

Metric in 3 dimesions, flat space, polar coordinates:

$$ds^{2} = dr^{2} + r^{2}d\Omega^{2}$$

$$d\Omega^{2} = d\theta^{2} + \sin^{2}\theta d\phi^{2}$$

Metric in 3 dimensions, arbitrary curvature:

$$ds^2 = \frac{dx^2}{1 - \kappa x^2 / R^2} + x^2 d\Omega^2$$

Flat: $\kappa = 0, x = r$

Negative: $\kappa = -1$, $x = R \sinh(r/R)$

Positive: $\kappa = 1$, $x = R \sin(r/R)$

Curvature radius