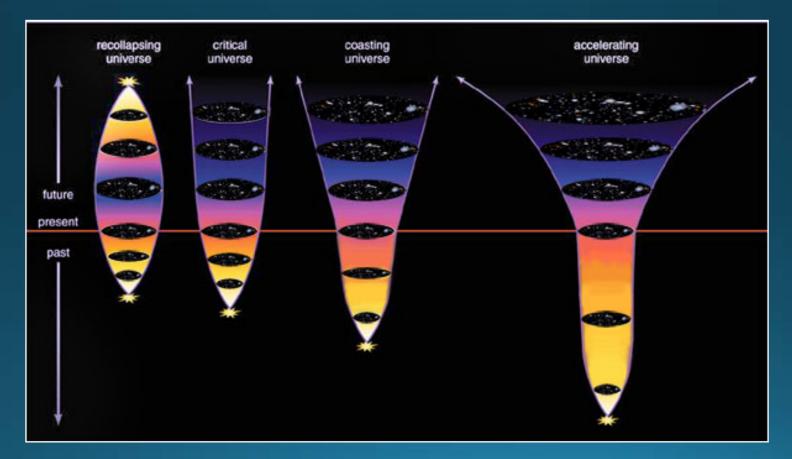
Cosmology 1FA209, 2016 Lecture 4: Cosmological models and the fate of the Universe



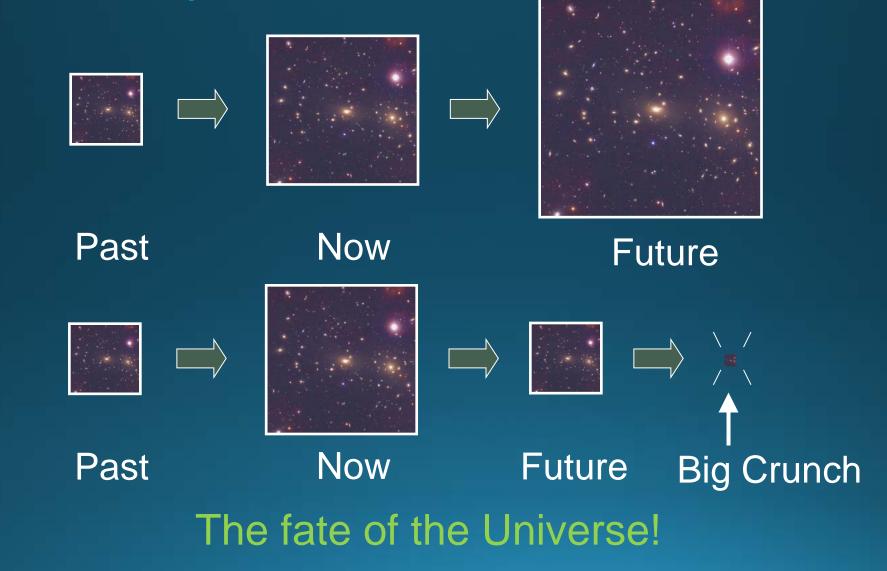
Outline

 Properties and fate of single-component Universes

- Empty Universe
- Flat Universe
- Matter/Radiation/Lambda-dominated Universe
- Einstein-de Sitter Universe
- Properties and fate of multiple-component Universes
 - Matter + curvature
 - Benchmark model
 - Other dark energy scenarios

Covers chapters 5 & 6 in Ryden

What the dynamics of the Universe can tell you



Density evolution (general)

- Friedmann equation + fluid equation + equation of state \rightarrow a(t), ϵ (t) or t(a), ϵ (a)
- Problem: There are many components in the Universe →
 - Evolution complicated
 - Different components dominate evolution at different times

Multiple energy components

Often, one just writes ϵ and Ω

$$\mathcal{E}_{\text{tot}} = \sum_{w} \mathcal{E}_{w}$$
$$\Omega_{\text{tot}} = \sum_{w} \frac{\mathcal{E}_{w}}{\mathcal{E}_{c}}$$

Remember:

- w = 0 (non relativistic matter)
- w = 1/3 (radiation and relativistic matter)
- w = -1 (cosmological constant)
- w < -1/3 (dark energy) \rightarrow Positive acceleration

Density evolution

Fluid equation + eq. of state (see exercise session) \rightarrow

$$\mathcal{E}_{w}(a) = \mathcal{E}_{w,0}a^{-3(1+w)}$$

$$\begin{cases} w_m = 0 \implies \varepsilon_m(a) = \varepsilon_{m,0} a^{-3} \\ w_r = 1/3 \implies \varepsilon_r(a) = \varepsilon_{r,0} a^{-4} \\ w_\Lambda = -1 \implies \varepsilon_\Lambda(a) = \varepsilon_{\Lambda,0} \end{cases}$$

Intermission: What are you looking at?

The benchmark model The currently favoured cosmological model: $\Omega_{\rm M} \approx 0.3$ $\Omega_{\rm M} = \Omega_{\rm Non-baryons (CDM)} + \Omega_{\rm Baryons}$ More on this in $\Omega_{\text{Non-baryons (CDM)}} \approx 0.26$ the dark matter $\Omega_{\rm Baryons} \approx 0.04$ lecture $\Omega_{\Lambda} \approx 0.7$ $\Omega_{\rm R} \approx 8.4 \times 10^{-5}$ $\Omega_{\rm R} = \Omega_{\rm CMB} + \Omega_{\rm v} + \overline{\Omega_{\rm starlight}}$ $\Omega_{\rm CMB} \approx 5.0 \times 10^{-5}$ $\Omega_{\rm v} \approx 3.4 \times 10^{-5}$ $\Omega_{\rm starlight} \approx 1.5 \times 10^{-6}$ $\Omega_{\rm tot} = \Omega_{\rm M} + \Omega_{\Lambda} + \Omega_{\rm R} \approx 1.0 \rightarrow$ Flat Universe ($\kappa = 0$)

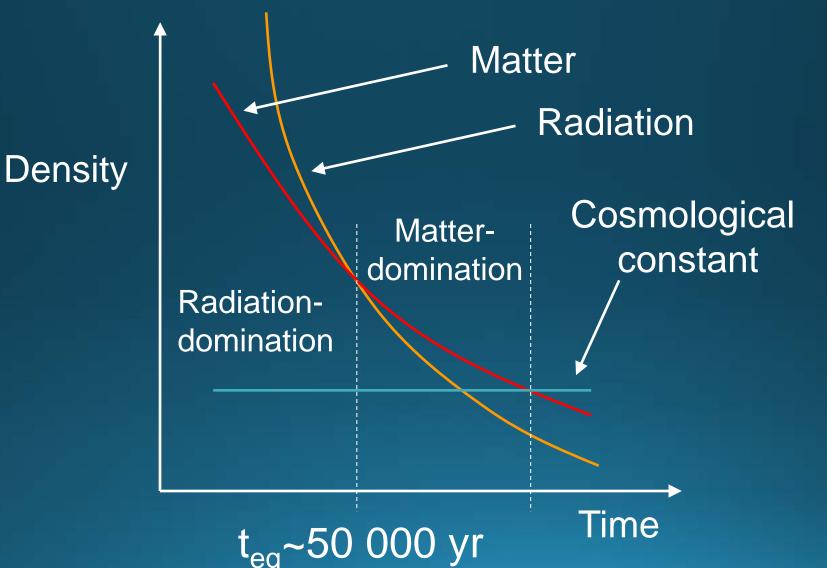
Why are single-component Universes relevant then?

$$w_{m} = 0 \implies \varepsilon_{m}(a) = \varepsilon_{m,0}a^{-3}$$
$$w_{r} = 1/3 \implies \varepsilon_{r}(a) = \varepsilon_{r,0}a^{-4}$$
$$w_{\Lambda} = -1 \implies \varepsilon_{\Lambda}(a) = \varepsilon_{\Lambda,0}$$

Values of Ω_{M} , Ω_{Λ} , Ω_{R} today + these relations $\rightarrow \epsilon_{M} \geq \epsilon_{\Lambda}$ at some point in the past (matter-dominated Universe) $\epsilon_{R} \geq \epsilon_{M}$ even further back (radiation-dominated Universe)

The different epochs of the Universe can be approximated by single-component evolution

Different components dominate the sum at different times



The Milne Universe (empty)

Of pretty limited relevance for our Universe, but provides simple demonstration of how to derive current age of Universe, a(t) and t(z) from the Friedmann equation

$$H(t)^{2} = \frac{8\pi G}{3c^{2}} \varepsilon(t) - \frac{\kappa c^{2}}{R_{0}^{2}} \frac{1}{a(t)^{2}}$$
$$\varepsilon(t) = 0 \quad \Rightarrow$$
$$H(t)^{2} = -\frac{\kappa c^{2}}{R_{0}^{2}} \frac{1}{a(t)^{2}} \Rightarrow$$
$$\dot{a}(t)^{2} = -\frac{\kappa c^{2}}{R_{0}^{2}}$$

The Milne Universe (empty) II

Empty, static Universe Empty, negatively curved

Current age of Universe:

$$\dot{a}(t)^{2} = -\frac{\kappa c^{2}}{R_{0}^{2}}$$

$$\kappa = 0 \implies \dot{a}(t) = 0$$

$$\kappa = -1 \implies$$

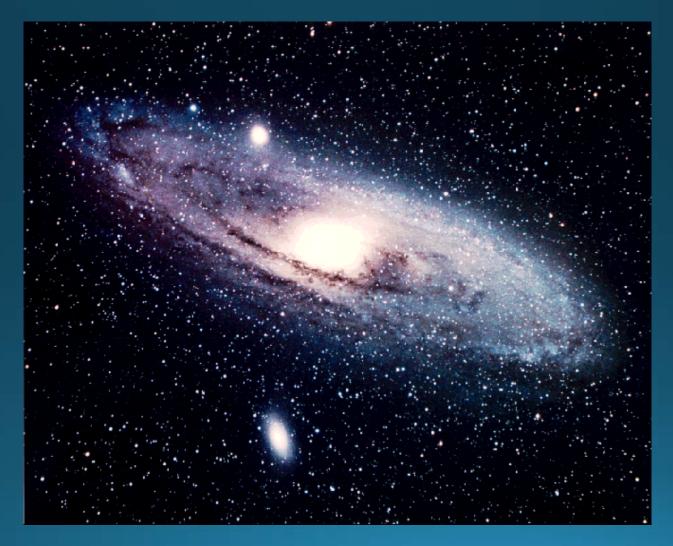
$$\dot{a}(t) = \frac{\mathrm{d}a}{\mathrm{d}t} = \pm \frac{c}{R_{0}}$$
If expanding (not contracting) \implies

$$t_{0} = \frac{R_{0}}{c}, \quad a(t) = \frac{t}{t_{0}}, \quad t(z) = \frac{t_{0}}{1+z}$$

Fate of the Universe in a Milne Universe

Eternal, constant expansion ('Big Chill')

Intermission: What are you looking at?



Proper distance in a Milne Universe

Proper distance from us to object which emitted light at t_e :

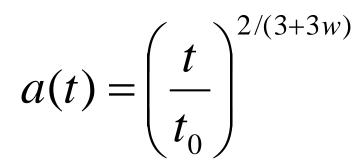
$$d_{p}(t_{0}) = c \int_{t_{e}}^{t_{0}} \frac{dt}{a(t)}$$

$$a(t) = \frac{t}{t_{0}} \implies d_{p}(t_{0}) = ct_{0} \int_{t_{e}}^{t_{0}} \frac{dt}{t} = ct_{0} \ln\left(\frac{t_{0}}{t_{e}}\right)$$

$$t_{e} = \frac{t_{0}}{1+z} \implies d_{p}(t_{0}) = ct_{0} \ln(1+z) = \frac{c}{H_{0}} \ln(1+z)$$

Flat, single-component Universes

For
$$w \neq -1$$
:



$$\mathcal{E}(t) = \mathcal{E}_0 \left(\frac{t}{t_0}\right)^{-2}$$

Important types of flat, single-component Universes

Radiation-only Universe (radiation-dominated epoch):

$$t_0 = \frac{1}{2H_0}, \quad a(t) = \left(\frac{t}{t_0}\right)^{1/2}$$

Matter-only Universe (matter-dominated epoch):

$$t_0 = \frac{2}{3H_0}, \quad a(t) = \left(\frac{t}{t_0}\right)^{2/3}$$

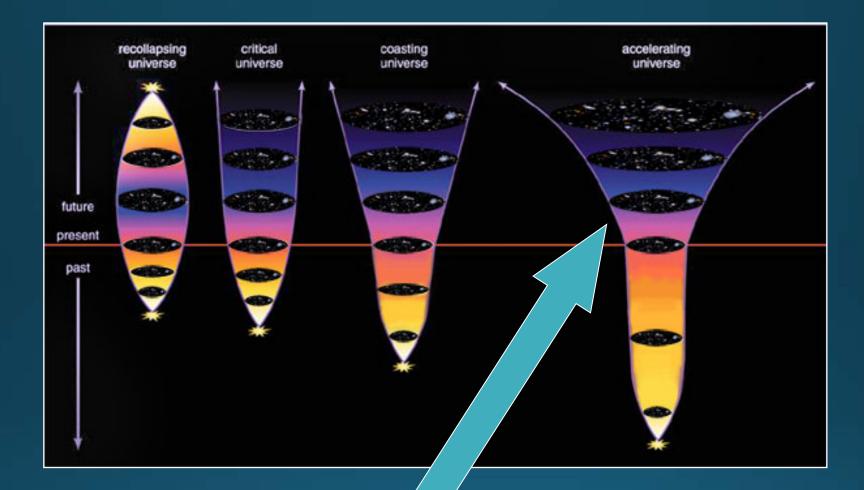
Λ -only Universe I

$$\Lambda \text{ has } w = -1 \implies$$
$$\dot{a}^2 = \frac{8\pi G \varepsilon_{\Lambda}}{3c^2} a^2$$
$$Rearrange:$$
$$\dot{a}^2 = H_0^2 a^2 \quad \text{if}$$
$$H_0 = \left(\frac{8\pi G \varepsilon_{\Lambda}}{3c^2}\right)^{1/2}$$

Λ -only Universe II

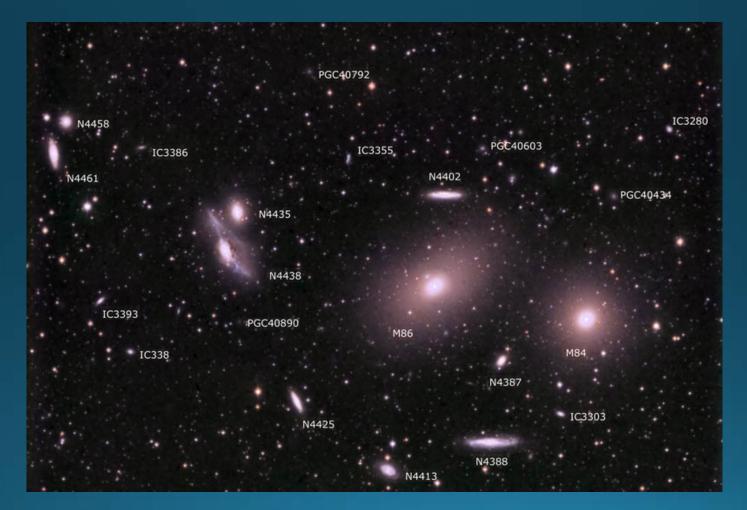
Solution :

 $a(t) = e^{H_0(t-t_0)}$ de Sitter Universe (de Sitter phase) Same growth as in Steady state cosmology



de Sitter Universe/phase (after 'present')

Intermission: What are you looking at?



Einstein-de Sitter Universe I

This served as the benchmark model up until the mid-1990s

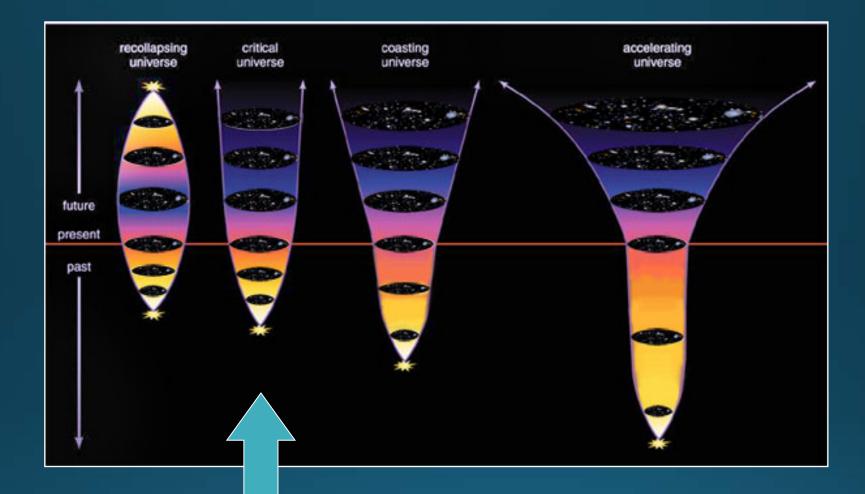
 Flat (i.e. critical-density), matter-dominated Universe

•
$$\Omega_{\rm M}$$
 = 1.0, $\Omega_{\rm tot}$ = 1.0, κ = 0

$$t_0 = \frac{2}{3H_0}, \quad a(t) = \left(\frac{t}{t_0}\right)^{2/3}$$

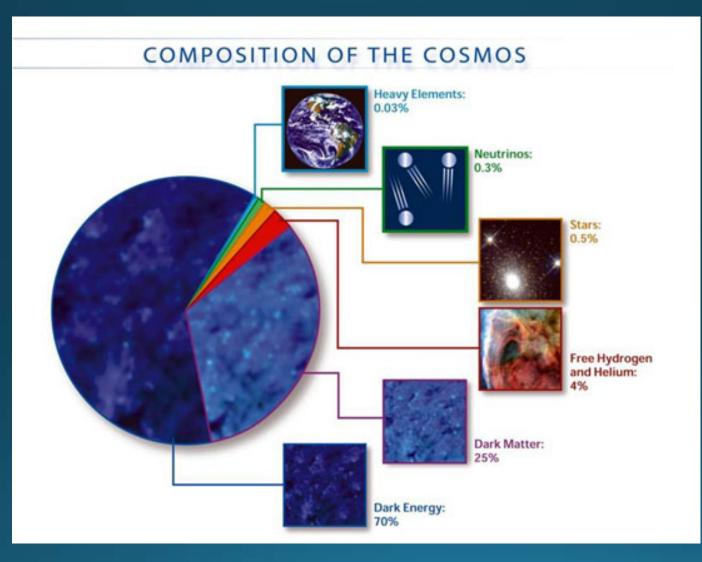


Asymptotically approaches zero expansion, but no recollapse



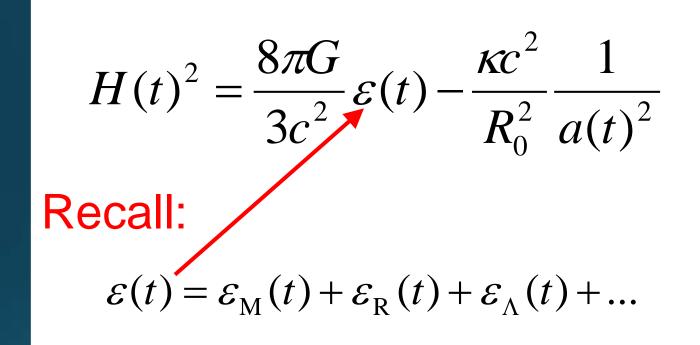
Einstein-de Sitter Universe

Multiple-component Universes I



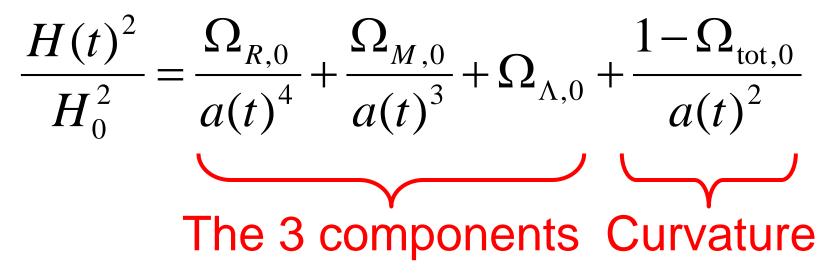
Note: Valid for current time only!

Multiple-component Universes II



Multiple-component Universes III

For 3 components with arbitrary curvature, the FE may be rewritten:



More components can easily be added as additional terms, as long as you know their a(t)-dependence

Multiple-component Universes IV

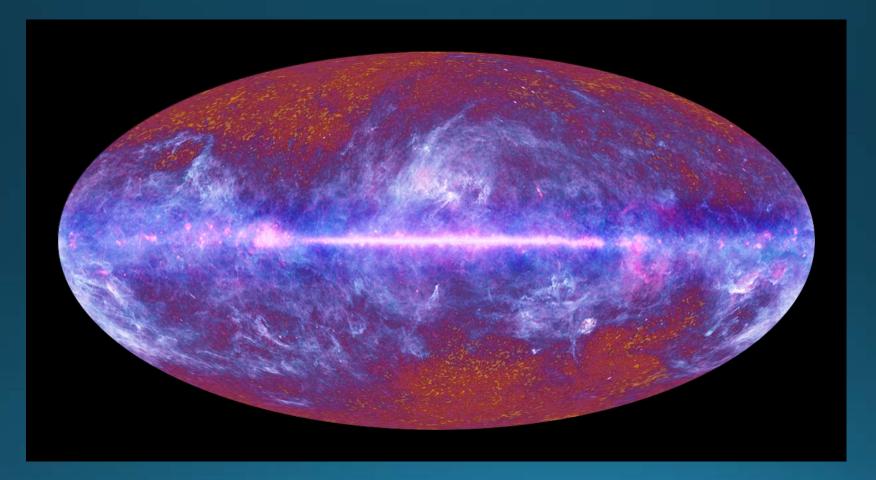
Time (from Big Bang):

$$t(a) = \frac{1}{H_0} \int_0^a \frac{\mathrm{d}a}{\left[\Omega_{R,0} a^{-2} + \Omega_{M,0} a^{-1} + \Omega_{\Lambda,0} a + (1 - \Omega_{\mathrm{tot},0})\right]^{1/2}}$$

Lookback-time = t_0 -t(a)

Nasty integral! No simple analytical solution in general case \rightarrow Use numerical integration!

Intermission: What are you looking at?

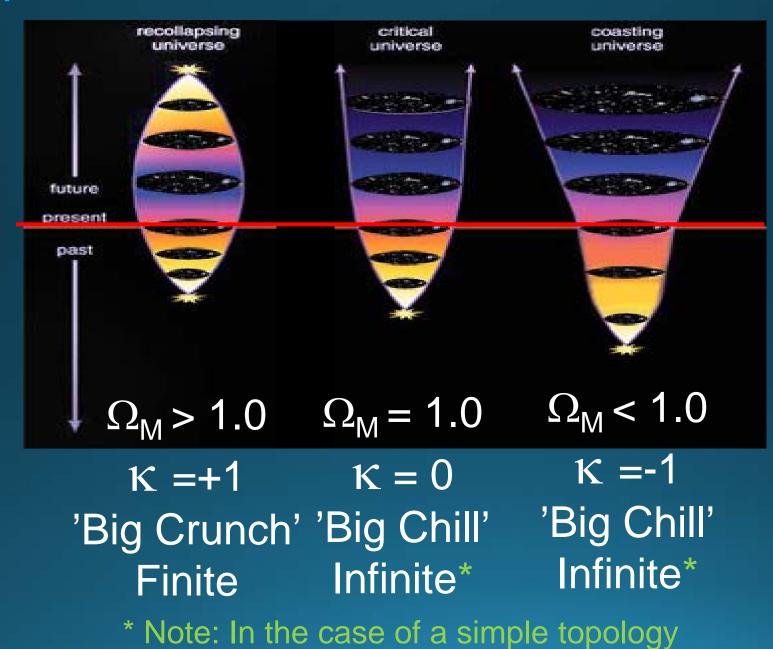


Special case: Matter + Curvature I

$$\frac{H(t)^2}{H_0^2} = \frac{\Omega_{\rm M,0}}{a(t)^3} + \frac{1 - \Omega_{\rm M,0}}{a(t)^2}$$

H(t)-evolution → Possible fates of Universe
 This is one of the hand-in exercises!
 (Note: Lots of help on page 85 in Ryden)

Special case: Matter + Curvature II

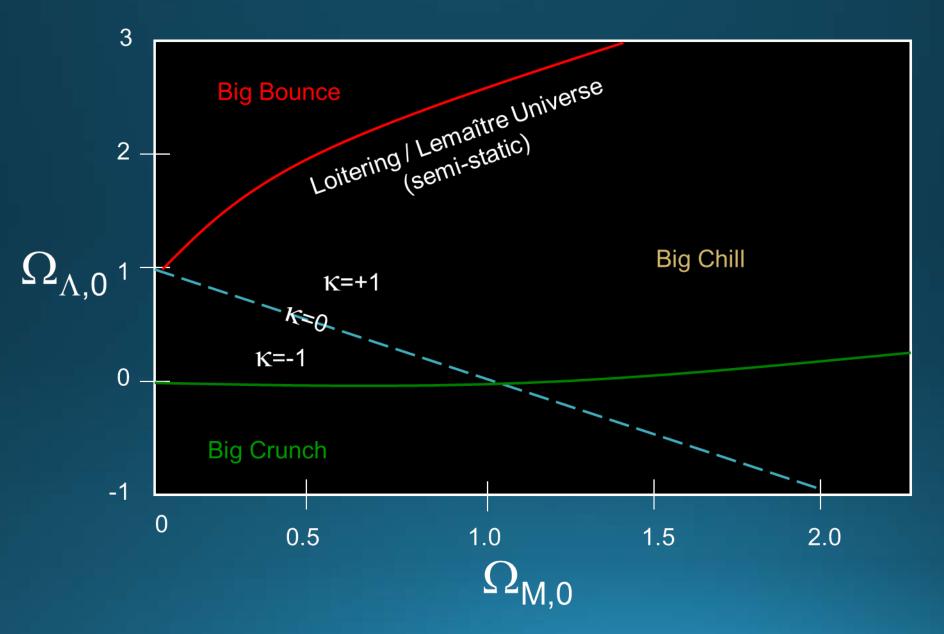


Special case: Matter + Curvature III

Up until the mid-gos, these were the only 3 possible fates of the Universe typically quoted in textbooks Intermission: What does "end of the Universe" actually mean?

• All life ends? • All stars fade away? •All black holes evaporate? •All matter destroyed? • Space ends? •Time ends?

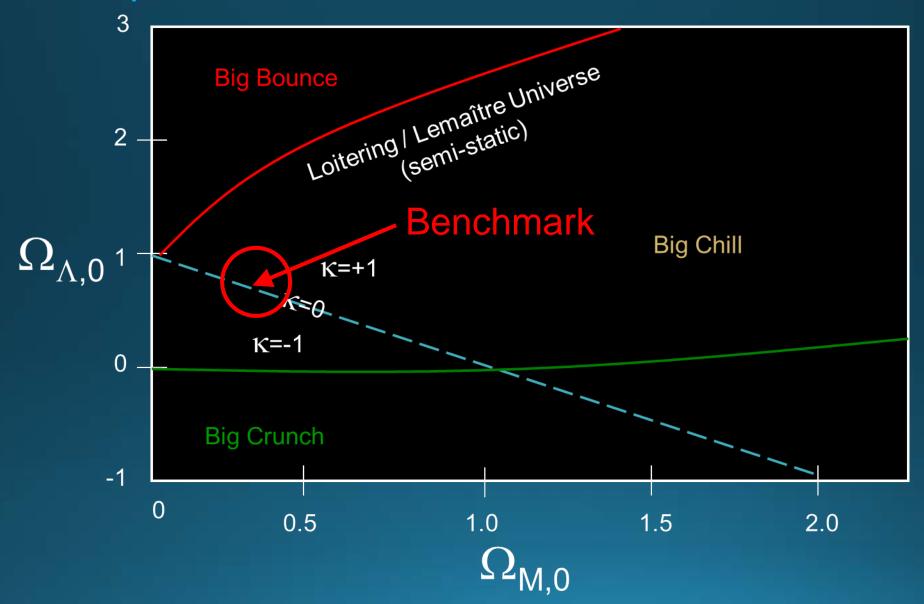
Matter + curvature + Λ



Properties of the benchmark model

 Matter-radiation equality: • a \approx 2.8×10⁻⁴ • t ≈ 4.7×10⁴ yr • Matter- Λ equality: • a ≈ 0.75 • t ≈ 9.8 Gyr •Now: • a = 1 •t≈13.7-13.8 Gyr

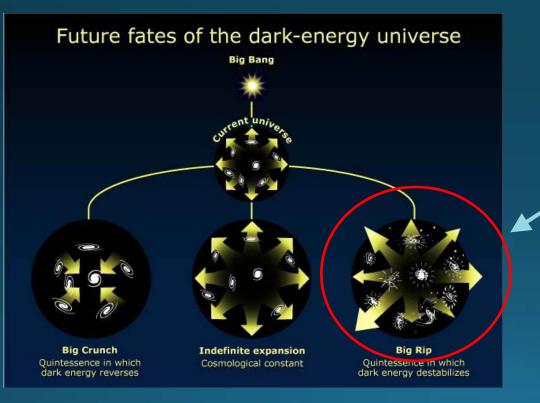
Properties of the benchmark model II



Other Dark Energy Models

What if dark energy is something other than Λ ?

- Varying equation of state w(t)?
- Constant $w \neq -1$?



More on this in exercise session

Our ignorance about the nature of dark energy \rightarrow Ultimate fate of our Universe unclear