Cosmology 1FA209 2017, 10 credits Lecture 1: Introduction

Formal Information

- •Teacher:
 - Erik Zackrisson
 - Office in the astronomy corridor on floor 3 in house 6 – just ring the bell to get in!
 - Telephone: 018-471 5975
 - E-mail: erik.zackrisson@physics.uu.se

• Course homepage:

<u>http://www.astro.uu.se/~ez/kurs/Cosmology17.html</u>

Outline for today

Formal Stuff
Course outline
Cosmic epochs

 $\left(\frac{\dot{R}}{\tilde{R}}\right)^2 + \frac{kc^2}{R^2} = \frac{8\pi}{3}G\rho$ $\frac{\ddot{R}}{\dot{R}} = -\frac{4\pi G}{3} \left(\rho + 3\frac{P}{c^2}\right)$ $\dot{\rho} = -3\left(\frac{\dot{R}}{R}\right)\left(\rho + \frac{P}{2}\right)$

What is this?

Course literature Introduction to cosmology 2nd edition (2017) Barbara Ryden Around 360-450 SEK (e.g. AdLibris, Bokus)

BARBARA RYDEN

Examination

•Seminars

•Seminar I: Common misconceptions of modern cosmology •Seminar II: Parallel Universes •Seminar III: Strange Universe Literature exercise •Written essay (\approx 3 pages) Oral presentation (≈10 minutes) Hand-in exercises

Seminars

- Instructions available from course homepage
- Purpose:
 - Practice finding and reading relevant research papers
 - Practice analyzing astronomical data
 - Practice critical thinking
 - Practice scientific creativity
 - Practice illustrating abstract concepts
 - Practice discussing with and in front of others

What if you cannot attend the seminars?

 Have to present results in written report before end of course (→ more work!)

Seminar I

- Title: Common misconceptions about modern cosmology
- Grade: Fail, 3, 4, 5
- Preparation:
 - Read suggested papers + others
 - Answer questions
 - Prepare to present answers and results in class

Seminar II

- Title: Parallel universes
- Grade: Fail, Pass
- Preparation:
 - Read suggested paper
 - Think about ways to explain the four levels of parallel universes and to create vizualations of these

Seminar III

- Title: Strange universe
- Grade: Fail, 3, 4, 5
- Preparation:
 - Analyze mock data set
 - Prepare to present your findings in class

What is this?

Literature exercise

- Choose topic individually
- Find suitable articles
 - Published papers (ADS abstract service) <u>http://adsabs.harvard.edu/abstract_service.html</u>
 - Preprints:
 - http://www.arxiv.org
- Written report (≈ 3 pages), deadline October 15
 Grade: Fail, 3, 4, 5
- Oral presentation (≈ 10 minutes) Group A: October 19 (10-12) Group B: October 19 (13-15)
 Grade: Fail, 3, 4, 5

Hand-in exercises

 6 hand-in problems available from course homepage

- These are fairly similar to the ones solved during the exercise sessions
- Deadline: October 29
- Grade: Fail, 3, 4, 5

 Collaboration OK, but please don't turn in identical solutions!

Cosmology 1FA209 Hand-in exercises 2017

Instructions: Hand-written solutions are quite acceptable, but submission via email is highly encouraged (and will allow for a swifter evaluation), so please consider scanning your solutions (or taking photos of them) and submitting them in electronic format. The deadline for handing in solutions to these problems is **October 29, 2017**.

1. Hubble's law and luminosity distance

A galaxy is observed at a redshift of z = 0.25. How distant is this object according to Hubble's law? How accurate is Hubble's law for estimating the luminosity distance at this redshift, under the assumption of a cosmological model with $\Omega_{\rm M} = 0.3$ and $\Omega_{\Lambda} = 0.7$?

2. Fate of the Universe Starting from the Friedmann equation

$$\frac{\dot{a}}{a}^{2} = \frac{8\pi G}{3c^{2}}\epsilon(t) - \frac{\kappa c^{2}}{R_{0}^{2}a(t)^{2}},$$
(1)

Literature exercise

If you cannot meet the deadlines for the written report or the oral presentation, you may hand the report in at some later time

But: You will then have to give the oral presentation at one of the Galaxies and Cosmology group meetings.

This is far scarier! Not recommended!

Suggestions for topics ITopology of the Universe

- Strange CMBR anisotropies
- Dark flow
- Varying constants of nature
- Alternative theories of gravity
- Alternative cosmologies
- Wormholes and time travel
- •The anthropic principle in cosmology
- Gravitational waves
 - But please feel free to suggest other topics!

Grading

• The final grade will be the mean grade from:

- Seminar 1
- Seminar 3
- Written report on literature exercise
- Oral presentation of literature exercise
- Hand-in exercises

 No final grade will be computed until you have a reached a passing grade (3 or higher) for each of these

 Please note that you also need a passing grade from seminar 2 to complete the course

Potential bonus exercise (still tentative): Virtual reality in the cosmology classroom

Not compulsory, but can boost final grade! Deadline: Nov 5

Schedule I

• 9 Lectures

- L1, Aug 30, 10-12: Course information, course overview
- L2, Aug 31, 15-17: Fundamentals, Gravity, Curvature (chapters 2-3)
- L3, Sept 4, 13-15: Metrics, Proper distance, Cosmic dynamics (chapters 3-4)
- L4, Sept 8, 10-12: Single and Multiple component Universes (chapters 5)
- L5, Sept 8, 13-15: Cosmological parameters and dark energy (chapters 6)
- L6, Sept 11, 10-12: Dark matter (chapter 7)
- L7, Sept 18, 8-10: CMBR (chapter 8)
- L8, Oct 6, 10-12: BBNS, the early Universe, inflation (chapter 9, 10)
- L9, Oct 11, 8-10: Structure formation (chapter 11-12)

Schedule II •3 Exercise sessions: •E1, Sept 27, 8-10 •E2, Oct 9, 8-10 •E3, Oct 13, 15-17

What happens in the exercise sessions?

- You solve problems in teams!
- Attendance not compulsory, but actively participating will make it much easier to complete the hand-in problems
- Suggested preparation:
 - Study exercises and solutions posted on course homepage for sessions 1-2
 - Bring pen, paper, calculator/computer, textbook and exercise solutions

Exercises and solutions on the course homepage for sessions 1 & 2

Please try to understand the solutions before coming to the exercise session!

The problems we solve in class will be similar. **Note: No preparations necessary for session 3** Cosmology 2017 Exercises with solutions – batch I

1. Learning to use the fluid equation: The density evolution of the Universe Use the fluid equation $\dot{\epsilon} + 3\frac{\dot{a}}{a}(\epsilon + P) = 0$ and the equation of state $P = w\epsilon$ to derive a proportionality relation between mass density and scale factor in the case of

- a) a radiation dominated Universe
- b) a matter dominated Universe
- c) a Universe dominated by a cosmological constant.

Solution: The ϵ in the fluid equation

$$+3\frac{\dot{a}}{a}(\epsilon+P) = 0\tag{1}$$

and the equation of state

 $P = w\epsilon$ (2)

represents energy density. We are, however, here asked to derive the relation between mass density ρ and the scale factor a. Luckily, the conversion between energy density and mass density is simply a question of applying $\epsilon = \rho c^2$ (think $E = mc^2$ and divide both sides by the volume), so

Exercise session 3: Fermi problems

Objective: Gain skill in making back-ofthe-envelope calculations

Examples:

- What is the mass of a sky scraper?
- How many atoms are there in the observable Universe?

Compete in teams - win marvelous prizes!

What is this?

© Australian Astronomical Observatory

Schedule III
3 seminars
Seminar I: Oct 2, 10-12 (group A) Oct 3, 10-12 (group B)
Seminar II: Oct 12, 12-15

•Seminar III: Oct 18, 8-10 (group A) Oct 18, 15-17 (group B)

Oral presentation of literature review
Oct 19, 10-12 (group A)
Oct 19, 13-15 (group B)

Schedule IV

•Important dates to remember:

- •October 2/3: Seminar 1
- October 12: Seminar 2
- October 15: Deadline for written literature report
- October 18: Seminar 3
- October 19: Oral presentations

October 29: Deadline for hand-in exercises
Nov 5: Deadline bonus exercise

How much time will I have to spend on this course?

My estimates:

- Attending classes:
 17*2 h = 30 h ~ 4 days
- Studying textbook:
 12 days (one chapter a day)
- Preparing for seminars:
 6 days (two days per seminar)
- Solving exercises (in-class exercises + hand-ins):
 6 days
- Literature exercise: 5 days

 (3 days for written report + 2 for oral presentation)

Sum: 33 days, i.e. 6.6 weeks or 10 ECTS

Lecture 1: Introduction
Formal stuff
Course outline
Cosmic epochs

Lecture 2: Basics
Cosmological principle
Cosmic expansion
Newton versus Einstein
Gravity = curvature
Metrics

 Lecture 3: Dynamics Robertson-Walker metric Proper distance Computational tools: • Friedmann equation Fluid equation Acceleration equation • Equation of state Cosmic dynamics

• Lecture 4: Towards a realistic cosmology

- Dynamics with single and multiple components
- Concordance cosmology (Benchmark model)
- Fate of the Universe

What is this?

What is this?

C Robert Gendler

Lecture 5: Cosmological parameters
Measuring cosmological parameters
Dark energy

- •Lecture 6: Dark matter
 - Evidence for dark matter
 - Baryonic and non-baryonic dark matter
 - Spatial distribution
 - Cold dark matter (CDM)
 - Problems with CDM
 - Dark matter candidates
 - Possible detections
 - Alternatives to dark matter

Dark matter

Luminous matter

- Lecture 7: The Cosmic Microwave Background Radiation
 - Origin of the CMBR
 - The dipole anisotropy
 - Recombination and decoupling
 - Temperature fluctuations
 - Cosmological information extracted from the CMBR

- Lecture 8: Big Bang Nucleosynthesis, the early Universe, cosmic inflation
 - BBNS
 - Measuring primordial abundances
 - What happened to the antimatter?
 - Problems with a noninflationary Big Bang
 - Inflation
 - Grand Unified Theories

Course Outline

Lecture 9: Structure formation

- Perturbation spectrum
- Jeans mass, Jeans length
- Hot vs. cold dark matter
- First light
- Large scale structure
- Cosmic reionization

1 Gpc/h

Millennium Simulation 10.077.696.000 particles

The Big Bang Scenario

 The part of the Universe <u>observable to us today</u> was extremely hot, dense and small ≈ 14 Gyr ago

The Universe expanded and cooled → cosmic epochs and events

Cosmic epochs

The Planck time

In extremely early Universe, gravity and quantum effects operate on same scale →
General relativity no good anymore! Theory of quantum gravity necessary!

t_{Planck}~10⁻⁴³ s

Prior to the Planck era: ????

Current Big Bang theory only describes what happens at t>tPlanck

What is this?

Grand Unification

Inflation

- Universe quickly expands by factor ~ 10³⁰
- Inflation finished by t~10⁻³² s
- Solves the flatness, isotropy (horizon) and magnetic monopole problems of the standard Big Bang model
- Quantum fluctuations blown up to cosmic scales → seeds for large-scale structure formation later on

Time

Phase transitions

Transitions:

- Grand unification transition: t~10⁻³⁶ s
- Electroweak phase transition t~10⁻¹² s
- Quark-hadron transition: t~10^{-6¹}

Defects may have formed:

- Domain walls
- Cosmic strings
- Monopoles
- Textures
- Primordial black holes
- Quark nuggets

Big Bang Nucleosynthesis

t_{BBNS}~100 s
Primordial abundances of D, ³He, ⁴He, ⁶Li, ⁷Li, ⁷Be established

Radiation-dominated era ends and the matter-dominated era begins

Recombination → Cosmic Microwave Background Radiation

- t_{recomb} ~ t_{CMBR} ~ 0.3 Myr
- $T_o \approx 2.73$ K, Black-body spectrum
- Temperature anisotropies on $\Delta T \sim 10^{-5}$ K scale

Structure formation I

Cold dark matter scenario

Structure formation II

Low-density region

High-density region (site of star formation)

Voids, walls and filaments

What is this?

First stars and reionization

© Kaehler, Turk and Abel

•t_{stars}~0.1 Gyr •t_{reionization}~ 0.1-1 Gyr

Hierarchical galaxy formation

Dark matter halos with some star formation

Hierarchical merging into bigger and bigger halos and galaxies Today

Matter-domination ends and dark energydomination begins

Today

- • $t_o \approx 13.8 \text{ Gyr}$
- Astronomical objects up to z≈10 have been detected
- The cosmic microwave background radiation has z ≈1100

Quite a few unsolved problems...

- What drove inflation?
- What is the dark matter?
- What is the dark energy?
 - How will the Universe end?
- What were the initial conditions?
 - Why is the Universe expanding?
 - Why is there something instead of nothing?
- Why is there more matter than antimatter?
- Is the Universe spatially infinite?
- What caused reionization?
- What came before the Big Bang?
- Are there parallel Universes?

