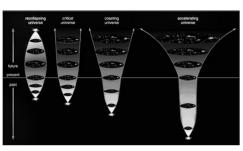
Cosmology 1FA209, 2017 Lecture 4: Cosmological models and the fate of the Universe



Seminar I request

October 2, 13-15 Emma Fransson Lifi Huang Thomas Mathisen Elise Sänger Charles Taylor Eva Laura Winter

Group B

October 3, 10-12 Brivael Laloux Vlad Rastau Josefine Nittler Larisa Castellanos Amanda Bernmalm Lawen Ahmedi Luis Tabera

Group C

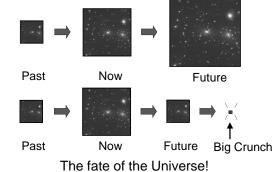
Is anybody from group C willing to move to group B? If so, please contact me!

Outline

- Properties and fate of single-component Universes
 - Empty Universe
 - Flat Universe
 - Matter/Radiation/Lambda-dominated Universe
 - Einstein-de Sitter Universe
- Properties and fate of multiple-component Universes
 - Matter + curvature
 - Benchmark model
 - Other dark energy scenarios

Covers chapter 5 in Ryden

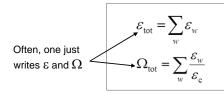
What the dynamics of the Universe can tell you



Density evolution (general)

- Friedmann equation + fluid equation + equation of state \rightarrow a(t), ϵ (t) or t(a), ϵ (a)
- Problem: There are many components in the Universe \rightarrow
 - Evolution complicated
 - Different components dominate evolution at different times

Multiple energy components



Remember:

w = 0 (non – relativistic matter)

w = 1/3 (radiation and relativistic matter)

w = -1 (cosmological constant)

w < -1/3 (dark energy) \rightarrow Positive acceleration

Density evolution

Fluid equation + eq. of state (see exercise session) \rightarrow

$$\mathcal{E}_{w}(a) = \mathcal{E}_{w,0} a^{-3(1+w)}$$

$$\begin{cases} w_{m} = 0 \implies \mathcal{E}_{m}(a) = \mathcal{E}_{m,0} a^{-3} \\ w_{r} = 1/3 \implies \mathcal{E}_{r}(a) = \mathcal{E}_{r,0} a^{-4} \\ w_{\Lambda} = -1 \implies \mathcal{E}_{\Lambda}(a) = \mathcal{E}_{\Lambda,0} \end{cases}$$

The benchmark model The currently favoured cosmological model: $\Omega_{\rm M} \approx$ 0.31 $\Omega_{\rm M} = \Omega_{\rm Non-baryons\,(CDM)} + \Omega_{\rm Baryons}$ \(\text{More on this in}\) $\Omega_{\text{Non-baryons (CDM)}} \approx 0.26$ the dark matter $\Omega_{\mathsf{Baryons}} \approx \mathsf{0.05}$ lecture $\Omega_{\Lambda} \approx 0.69$ $\Omega_R \approx 8.4 \times 10^{-5}$ $\Omega_{\rm R} = \Omega_{\rm CMB} + \Omega_{\rm v} + \Omega_{\rm starlight}$ $\Omega_{\text{CMB}} \approx 5.4 \times 10^{-5}$ $\Omega_{\rm v} \approx 3.6 \times 10^{-5}$ $\Omega_{\rm starlight} \approx {\rm 1.5 \times 10^{-6}}$ Ω_{tot} = Ω_{M} + Ω_{Λ} + Ω_{R} pprox 1.0 ightarrowFlat Universe ($\kappa = 0$)

Why are single-component Universes relevant then?

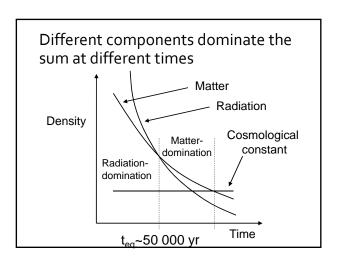
$$w_m = 0 \implies \varepsilon_{\rm m}(a) = \varepsilon_{m,0} a^{-3}$$

 $w_r = 1/3 \implies \varepsilon_{\rm r}(a) = \varepsilon_{r,0} a^{-4}$
 $w_{\Lambda} = -1 \implies \varepsilon_{\Lambda}(a) = \varepsilon_{\Lambda,0}$

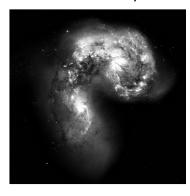
Values of $\Omega_{\mathrm{M}}, \Omega_{\Lambda}, \Omega_{\mathrm{R}}$ today + these relations \rightarrow $\epsilon_{\mathrm{M}} \geq \epsilon_{\Lambda}$ at some point in the past (matter-dominated Universe)

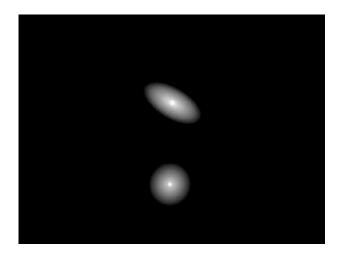
 $\epsilon_{\text{R}} \geq \epsilon_{\text{M}} \text{ even further back}$ (radiation-dominated Universe)

The different epochs of the Universe can be approximated by single-component evolution



Intermission: What are you looking at?





The Milne Universe (empty)

Of pretty limited relevance for our Universe, but provides simple demonstration of how to derive current age of Universe, a(t) and t(z) from the Friedmann equation

$$H(t)^{2} = \frac{8\pi G}{3c^{2}} \varepsilon(t) - \frac{\kappa c^{2}}{R_{0}^{2}} \frac{1}{a(t)^{2}}$$

$$\varepsilon(t) = 0 \quad \Rightarrow$$

$$H(t)^{2} = -\frac{\kappa c^{2}}{R_{0}^{2}} \frac{1}{a(t)^{2}} \Rightarrow$$

$$\dot{a}(t)^{2} = -\frac{\kappa c^{2}}{R_{0}^{2}}$$

The Milne Universe (empty) II

Empty, static Universe Empty, negatively curved

 $\dot{a}(t)^2 = -\frac{\kappa c^2}{R_0^2}$ $\kappa = 0 \implies \dot{a}(t) = 0$ $\kappa = -1 \implies$ $\dot{a}(t) = \frac{\mathrm{d}a}{\mathrm{d}t} = \pm \frac{c}{R_0}$

If expanding (not contracting) \Rightarrow Current age of Universe: $t_0 = \frac{R_0}{c}$, $a(t) = \frac{t}{t_0}$, $t(z) = \frac{t_0}{1+z}$

Fate of the Universe in a Milne Universe

Eternal, constant expansion ('Big Chill')

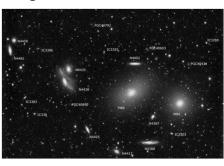
Proper distance in a Milne Universe

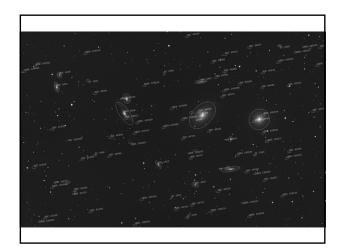
Proper distance from us to object which emitted light at t_e : $d_{p}(t_{0}) = c \int_{t_{e}}^{t_{0}} \frac{\mathrm{d}t}{a(t)}$

$$a(t) = \frac{t}{t_0} \implies d_p(t_0) = ct_0 \int_{t_e}^{t_0} \frac{dt}{t} = ct_0 \ln\left(\frac{t_0}{t_e}\right)$$

$$t_e = \frac{t_0}{1+z} \implies d_p(t_0) = ct_0 \ln(1+z) = \frac{c}{H_0} \ln(1+z)$$

Intermission: What are you looking at?





Flat, single-component Universes

For
$$w \neq -1$$
:

$$a(t) = \left(\frac{t}{t_0}\right)^{2/(3+3w)}$$

$$\varepsilon(t) = \varepsilon_0 \left(\frac{t}{t_0}\right)^{-2}$$

Important types of flat, single-component Universes

Radiation-only Universe (radiation-dominated epoch):

$$t_0 = \frac{1}{2H_0}, \quad a(t) = \left(\frac{t}{t_0}\right)^{1/2}$$

Matter-only Universe (matter-dominated epoch):

$$t_0 = \frac{2}{3H_0}, \quad a(t) = \left(\frac{t}{t_0}\right)^{2/3}$$

Λ -only Universe I

$$\Lambda \text{ has w} = -1 \Rightarrow$$

$$\dot{a}^2 = \frac{8\pi G \varepsilon_{\Lambda}}{3c^2} a^2$$

Rearrange:

$$\dot{a}^2 = H_0^2 a^2$$
 if

$$H_{0} = \left(\frac{8\pi G \varepsilon_{\Lambda}}{3c^{2}}\right)^{1/2}$$

Λ -only Universe II

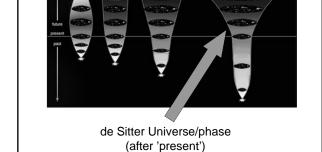
Solution:

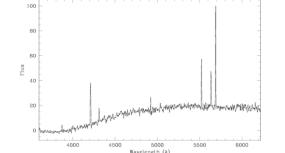
$$a(t) = e^{H_0(t-t_0)} \mathop{\rm de\ Sitter\ Universe\ (de\ Sitter\ phase)}_{\rm Same\ growth\ as\ in\ Steady\ state\ cosmology}$$



Now **Future**

Intermission: What are you looking at?



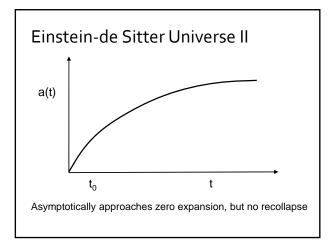


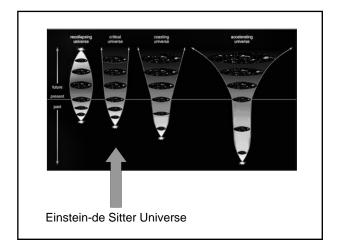
Einstein-de Sitter Universe I

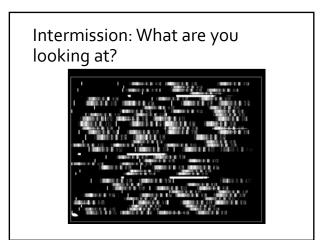
This served as the benchmark model up until the mid-1990s

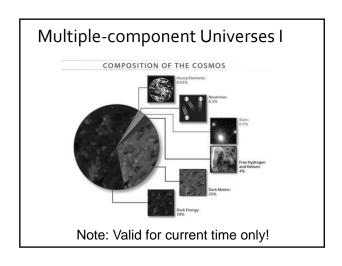
- Flat (i.e. critical-density), matter-dominated Universe
- \bullet $\Omega_{\rm M}$ = 1.0, $\Omega_{\rm tot}$ = 1.0, κ = 0

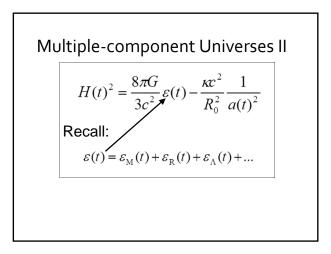
$$t_0 = \frac{2}{3H_0}$$
, $a(t) = \left(\frac{t}{t_0}\right)^{2/3}$











Multiple-component Universes III

For 3 components with arbitrary curvature, the FE may be rewritten:

$$\frac{H(t)^{2}}{H_{0}^{2}} = \frac{\Omega_{R,0}}{a(t)^{4}} + \frac{\Omega_{M,0}}{a(t)^{3}} + \Omega_{\Lambda,0} + \frac{1 - \Omega_{\text{tot},0}}{a(t)^{2}}$$

The 3 components Curvature

More components can easily be added as additional terms, as long as you know their a(t)-dependence

Multiple-component Universes IV

Time (from Big Bang):

$$t(a) = \frac{1}{H_0} \int_0^a \frac{\mathrm{d}a}{\left[\Omega_{R,0} a^{-2} + \Omega_{M,0} a^{-1} + \Omega_{\Lambda,0} a + (1 - \Omega_{\text{tot},0})\right]^{1/2}}$$

Lookback-time = t_0 -t(a)

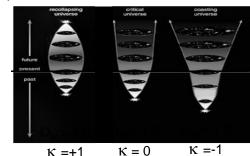
Nasty integral! No simple analytical solution in general case → Use numerical integration!

Special case: Matter + Curvature I

$$\frac{H(t)^2}{H_0^2} = \frac{\Omega_{\text{M},0}}{a(t)^3} + \frac{1 - \Omega_{\text{M},0}}{a(t)^2}$$

H(t)-evolution → Possible fates of Universe This is one of the hand-in exercises! (Note: Lots of help on page 86-87 in Ryden)

Special case: Matter + Curvature II

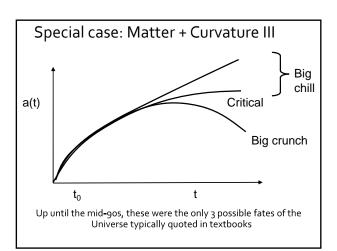


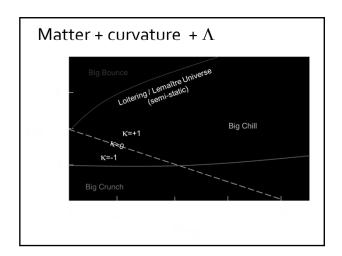
 $\kappa = +1$ $\kappa = 0$ $\kappa = -1$ 'Big Crunch' 'Big Chill' 'Big Chill' Finite Infinite* Infinite*

* Note: In the case of a simple topology

Intermission: What does "end of the Universe" actually mean?

- All life ends?
- All stars fade away?
- •All black holes evaporate?
- All matter destroyed?
- •Space ends?
- •Time ends?





Properties of the benchmark model

- Matter-radiation equality:
 - a \approx 2.8 \times 10⁻⁴
 - $t \approx 4.7 \times 10^4 \text{ yr}$
- Matter- Λ equality:
 - a ≈ o.75
 - $t \approx 9.8 \, Gyr$
- •Now:
 - a = 1
 - $t \approx 13.7$ -13.8 Gyr

