

Cosmological parameters I

The most important ones in this course:

- Ω_M: Matter
- $\bullet \ \Omega_{\mathsf{R}}: \mathsf{Radiation}$
- ${\color{black} \bullet \Omega_{\Lambda}} or \ \Omega_{\text{DE}} :$ Cosmological constant or dark energy
- Ω_{tot} (or just Ω): Sum of the other Ω s
- κ : Curvature (+1,0,-1) related to Ω_{tot}
- R₀: Curvature radius of the Universe
- w_{DE}: Equation of state of dark energy
- H₀: Hubble parameter at current time (often expressed as h: H₀=100h km s⁻¹ Mpc⁻¹)
- t₀: Current age of the Universe

Cosmological parameters II

An endless number of subpopulations can be introduced if necessary...

- Ω_{CDM} : Cold dark matter
- Ω_{bar}: Baryons
- Ω_{stars} : Stars
- Ω_{CMBR}: CMBR photons
- Ω_{v} : Neutrinos
- Ω_{BH}: Black holes
- Ω_{Robots}: Robots (see exercises)

A few others...

- q_o: Deceleration parameter
- $\sigma_{8^{:}}$ Root-mean-square mass fluctuation amplitude in spheres of size 8h $^{\mathtt{1}}$ Mpc
- τ : Electron-scattering optical depth
- η: Inhomogeneity parameter
- n_s: Slope of matter power spectrum
- $\bullet z_{reion}$: Redshift of reionization
- N_{eff}: Effective number of neutrino species

Deceleration parameter I

Definition:

$$q_0 = -\left(\frac{\ddot{a}a}{\dot{a}^2}\right)_{t=t_0} = -\left(\frac{\ddot{a}}{aH^2}\right)_{t=t_0}$$

$$q_0 > 0 \implies$$
 Expansion slowing down (deceleration)
 $q_0 < 0 \implies$ Expansion speeding up (acceleration)

Cosmological distances II

Proper distance

Remember: Length of spatial geodesic at time t if scale factor is fixed at a(t). This is sometimes referred to as "distance as measured by a rigid ruler"

The proper distance is important for theoretical reasons, but impossible to measure in practice, since you cannot halt the expansion of space!

- Other distance definitions:
 - Luminosity distance
 - Angular size distance

In a static Euclidian (flat) Universe, these would all be equivalent – but in our Universe, they're not!

•Time signals stretched by redshift

How to use the luminosity distance as a probe of cosmology

Remember: T $d_{\tau} =$ 4π For a flat Unive c(1+z)dz d_{τ} $\sqrt{\Omega_{\rm M}(1+z)^3 + \Omega_{\Lambda}}$ H_0

- Observables: z and f
- If you know the intrinsic luminosity L of a light source, you can get information on $H_{or} \Omega_{Mr} \Omega_{\Lambda}$... Standard candles: Light sources for which L can be derived through some independent means

Intermission: What's going on here?

What are these black stripes?

Dark energy and other alternatives

Alternatives to a cosmological constant:

- •Dark energy with constant w \neq -1
- •Dark energy with w(z)
- Modification of Friedman equation, for instance due to:
 - Alternative theories of gravity
 - Additional spatial dimensions
 - Breakdown of cosmological principle
 - Non-standard models of dark matter

Suitable for literature exercises

The Big Rip I

Phantom energy with equation of state w <-1 → Dark energy grows over time → Alternative fate of the Universe in which currently bound structures will get disassembled in the future

The Big Rip IITABLE I: The history and future of the Universe with w = -3/2 phantom energy.Time EventTime Or -36 sPlanck era $\sim 10^{-36}$ sPlanck era $\sim 10^{-36}$ sInflationFirst Three MinutesLight Elements Formed $\sim 10^5$ yrAtoms Formed $\sim 10^5$ yrAtoms Formed ~ 16 yrFirst Galaxies Formed ~ 15 GyrTodaytrip - 10 GyrEarthe Earth Explodestrip - 3 monthsUnbind Solar Systemtrip = 35 GyrsBig RipCaldwell et al. (2003)