
Cosmology 1FA209, 2017 Lecture 8: The early Universe

About the format of the literature report

Minimum 3 pages!

<u>Suggested</u> structure: Introduction "Main text" Discussion Conclusion References

Alternative Theories of Gravity

This is an ongoing debate between scientists today—dark matter or no dark matter? General relativity or another theory? Studying alternative theories of gravity in certainly no easy task and to have a theory with no dark matter requires a lot of work and thought. There are many ongoing

There are, on the other hand, also problems with this theory. Firstly it is not a relativistic theory, and cosmological observations require such a theory. For instance, MOND does not predict the gravitational lensing that has been observed, and which General Relativity does predict. This is, on the other hand, relatively easy to solve by introducing a vector field (which is what lead to TeVeS, discussed more in detail below) [2,4]. It also does not explain the behaviour of galacy clusters well, which is a major issue present for many, if not all, alternative theories of gravity [5].

Going from MOND to the previously mentioned TeVeS was not done in one step. The early attempts to broaden MOND into an relativistic theory were quickly disregarded, either by tests or by incompatibility to the known physics of today. It was family done by J. D. Bekenstein, after generalizing a theory by R. H. Sanders [2]. TeVeS gravity stands for Tensor-Vector-Sealar gravity, and is precisely that, a theory of gravity which has parts of tensor, scalars and vectors, and thereby is a relativistic theory.

TeVeS approximates to MOND in the weak acceleration limit [2], which is comparable to how General Relativity approximates to the Newtonian gravity here on Earth. Another major likeness is the fact that TeVeS can predict more than MOND can, much the same way there is a lot General Relativity can predict, which the Newtonian gravity can not. It predicts, as mentioned earlier, gravitational lensing, and ic can also be shown that TeVeS is compatible with the basic observations of the Universe known today [2,7].

Use bracket-number (e.g. [3]) or author-year (e.g. Zackrisson et al. 2017) format for references in text

References

(Citton, Termin, F.G., Phillis, A., Stordis, C., (2011). "Modified Gravity and Connology". arXiv:1106.2476v2

Shordis, C. (2009). "The Timore Vectore-Scalar theory and in counslogy". arXiv:2003.03021

Shordis, C. (2009). "The Timore Vectore-Scalar theory and in counslogs". arXiv:2003.03022

Bernstein J. P. (2009). "Enter State of Control of Control of MOND Data gravity". arXiv:2005.4013v2

Fermin J. P. G., Suthama G. D., (2009). "Enterin 'i Theory of Gravity and the Problem of Mining Mans". arXiv:2001.0313v2

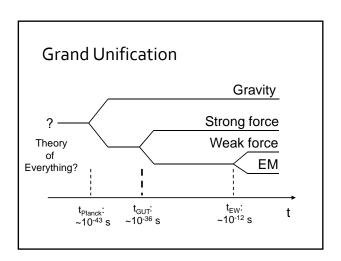
Magnilane Binata, C. E., Zimdald, W. (2010). "Power law solutions for TeVes". arXiv:2012.438v2

Dadelines, S. (2011). "The Red Problem with MOND". arXiv:1112.1320-1

Beltameter, J. D., (2010). "Modified gravity as an advantative to dark nature", arXiv:1013.438v1

Disch. V. (2011). "Connological consequences of Modified Gravity (MOG)", arXiv:1015174v2

[Hagha, H., Rahva, S., (2010). "Observational Countrients on the Modified Gravity Model (MOG) Proposed by Moffaet Uning Magnilanis' systems, arXiv:1013.13801

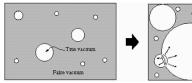

Magallanis System" arXiv:100.3136v1 [J. Moffine, J. W. Morgallanis System" arXiv:100.3136v1 [J. Moffine, J. W. 2006. "Gravitational Lenging and Modified Gravity and the Lenning of Merging Clusters without Dark Matter Alexander (2006) [A. Modified Gravity and in Consequences for the Solar System, Astrophysics and Cosmology". ArXiv:ps. 90(2007) [A. Modified Gravity and in Consequences for the Solar System, Astrophysics and Cosmology". ArXiv:ps. 90(2007) [A. Modified Gravity and International Computer (2007) [A. Modified Gravity and Computer (2007) [A. Modified Gravity, A. Modified Gravity, Gallay Returine Curves, and Quadropole Gravitational Polestaciers." ArXiv:1104.2555v1 [Jil] Moffine, J. W., Toda, V. T., (2011). "Cosmological observations in a modified theory of gravity (MOG)" arXiv:1104.2555v1

Reference list at the end – including at least: author(s), year, journal, journal number, page. Sometimes, article name and preprint number is also listed. Please try to avoid using web pages as references!

Outline

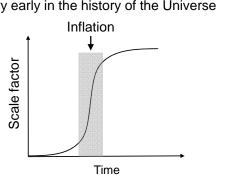
- Grand unificiation
- Cosmic inflation
- Origin of the elements
- Big Bang Nucleosynthesis
- Measuring elemental abundances

Covers chapters 9 & 10 in Ryden

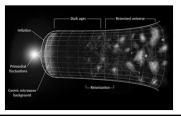

Grand Unification II

- •Electroweak unification experimentally confirmed in late 1970s → Nobel prize in physics to Maxwell, Weinberg, Salam & Glashow for electroweak theory
- GUT happens at E_{GUT} ~10 12 TeV
- •LHC reaches ~ 10 TeV \rightarrow Experimental confirmation of GUT is not gonna happen

Phase Transitions


The Universe underwent a phase transition when the temperature dropped below $T_{\text{GUT}}\!\!\sim\!\!10^{28}~\text{K}$ Symmetry between strong and electroweak force lost \rightarrow Topological defects!

Many GUT scenarios produce magnetic monopoles with mc²~10¹² TeV


What is cosmic inflation?

A short period of fast expansion, happening very early in the history of the Universe

Why do we need inflation?

- •To solve:
 - Flatness problem
 - Horizon problem
 - Magnetic monopole problem
- To provide the seeds for structure formation

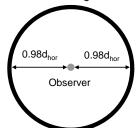
The flatness problem I

Observationally:

 $|1 - \Omega_0| \le 0.1$

One can show that this implies, at the Planck time:

 $\left|1\!-\!\Omega_{\text{Planck}}\right|\!\leq\!10^{-60}$


Hence, if the Universe is close to flat now,

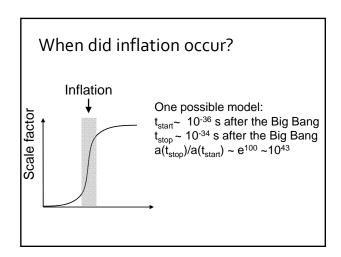
it was extremely close to flat in the past.

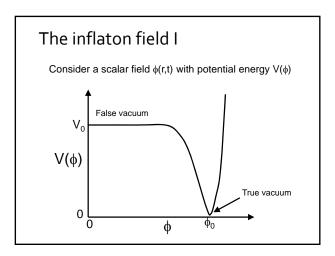
Why is the Universe so close to flat? If this is a coincidence, it very, very improbable!

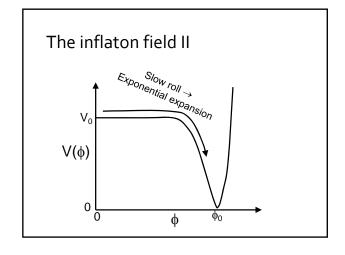
The horizon problem I

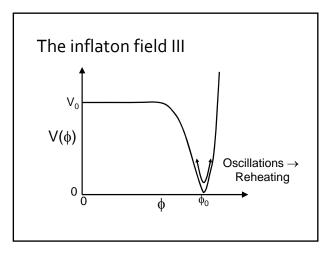
Last scattering surface

How can the CMBR be almost completely isotropic, when opposite sides of the sky have never been in casual contact?


The horizon problem II $\theta_{\rm hor} = \frac{d_{\rm hor}(t_{\rm lss})}{d_{\rm A}} \approx \frac{0.4 \rm Mpc}{13 \rm Mpc} \approx 2 \ \rm degrees$ • Regions in causal contact ~20000 patches in the CMBR sky


The magnetic monopole problem I


Magnetic monopoles: zero-dimensional objects which act as isolated north or south poles of a magnet


Many GUT models predict huge numbers of these! While subdominant at creation, they would soon come to dominate the energy density of the Universe

Problem: No such objects have ever been observed! Where are the magnetic monopoles?

Reheating

If the Universe expands by a factor of \sim e¹⁰⁰ \rightarrow Temperature drops by e⁻¹⁰⁰ and the radiation energy denstiy gets extremely small

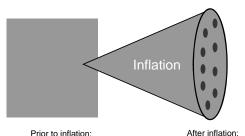
How come it's not small after inflation then?

Oscillations of ϕ around $\phi_0 \rightarrow$ Some of the energy of the inflaton field are being carried away by radiation These photons *reheat* the Universe Hence, no shortage of photons after inflation!

Slow-roll

$$\varepsilon_{\phi} = \frac{1}{2} \frac{1}{hc^3} \dot{\phi}^2 + V(\phi)$$

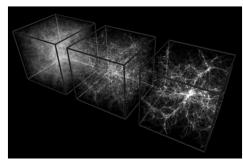
$$P_{\phi} = \frac{1}{2} \frac{1}{hc^3} \dot{\phi}^2 - V(\phi)$$


Slow roll:

$$\dot{\phi}^2 << hc^3V(\phi) \Rightarrow$$

$$\varepsilon_{\phi} \approx -P_{\phi} \approx V(\phi)$$

Negative pressure! Λ-like expansion! de Sitter phase!


Seeds for structure formation

Prior to inflation:
Microscopic quantum fluctuations
Virtual particles created and annihilated

After inflation:
Quantum fluctuations blow up
to macroscopic scales
act as seeds for structure formation

Seeds for structure formation II

Current Universe Primordial seeds have generated very complicated structure

Inflation as a solution to the flatness problem I

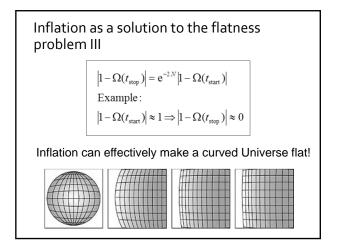
The acceleration equation:

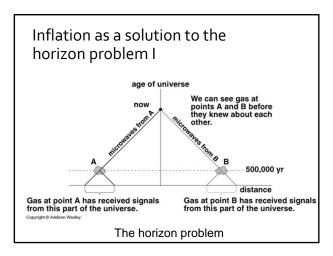
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2} (\varepsilon + 3P)$$

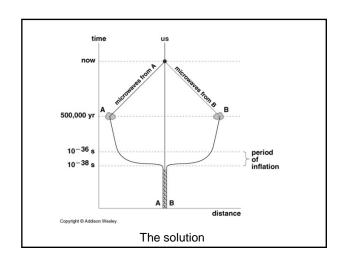
During inflation, the Universe is temporarily dominated by a component with P < - ϵ /3 (i.e. w<-1/3), giving positive acceleration. One often assumes a *cosmological constant* $\Lambda_{\text{inflation}}$ to be responsible.

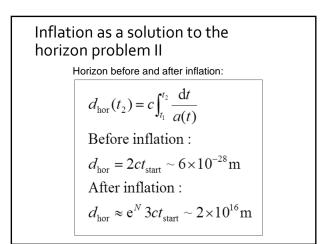
Note: This constant is very different from the Λ driving the cosmic acceleration today. $\Lambda_{inflation} \sim 10^{107} \; \Lambda \ldots$

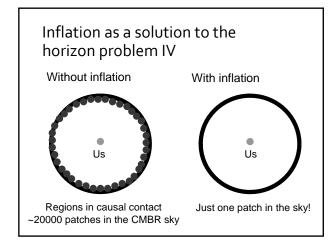
Inflation as a solution to the flatness problem II


Hubble parameter and scale factor during inflation:

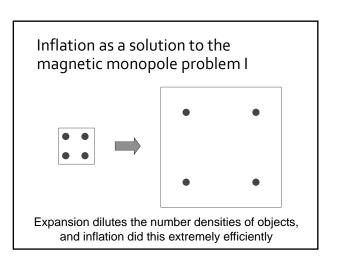

$$H_{\text{inflation}} = \left(\frac{\Lambda_{\text{inflation}}}{3}\right)^{1/2}$$


$$\alpha(t) \propto e^{H_{\text{inflation}}t}$$

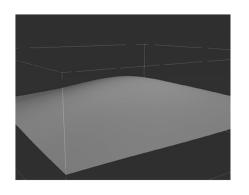

Number of e-foldings during inflation:


$$N = H_{\rm inflation} (t_{\rm stop} - t_{\rm start})$$

 $N \sim 100$

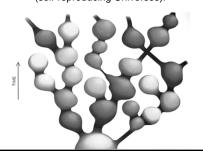


Inflation as a solution to the magnetic monopole problem II


At the end of inflation:

$$n_{\text{monopoles}}(t_{\text{stop}}) \sim e^{-300} n_{\text{monopoles}}(t_{\text{GUT}})$$

A realistic number density of monopoles at the GUT epoch would correspond to less than one monopole within the volume spanned by the last scattering surface


Eternal inflation I Once the inflaton field has come to rest at ϕ_0 , inflation ends. But in some regions of space equantum fluctuations can make the inflation field move up the potential again \rightarrow Some regions keep inflating V_0 $V(\varphi)$

Eternal inflation II

Eternal inflation III

Differently inflated regions may end up with very different properties ('mutations') → Multiverse Good 'genes' may promote further expansion (self-reproducing Universes).

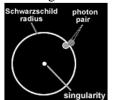
Eternal inflation IV

- Quantum fluctuations in $\phi \to Future$ -eternal inflation Inflation will always continue (somewhere)
- Past-eternal inflation models also exist: Revives the perfect cosmological principle! The interior of each inflating bubble may be described by the Big Bang theory, but the multiverse as a whole has been around forever

Stellar Black Holes Initial mass: Last stages:

Remnant mass:

Since the progenitors of stellar black holes are baryonic,


these black holes cannot contribute much to the matter density of the Universe

Primordial Black Holes

- High-density regions in the early Universe (t « 1 s) may collapse into primordial black holes
- PBHs could in principle form with masses from M_{Planck} 10¹⁵ M_{color}
- M_{Planck} 10¹⁵ M_{solar}
 Remains a viable candidate for the cold dark matter: Ω_{PBH} could be ~0.3!
- Example:
 - M_{PBH}~10⁻⁸ M_{solar} (mass of the Moon) would have a size (event horizon) of R~0.1 mm

Primordial Black Holes II

Hawking radiation:

•Observational constraints:

- BBNS abundances
- Gamma-ray background
- CMBR


 $\tau_{evm} \sim 9 \cdot 10^{-18} \, M^3 s$

$$T_{rad} = \frac{hc^3}{16\pi^2 kGM}$$

Objects with $M > 5 \times 10^{11} \text{ kg}$ would still be around!

Unclear what happens at M_{Planck} . Relics may form!

Intermission: What are you looking at?

What mass fraction of the particles in your body has at some point in the past been inside a star?

- •A) 1%
- •B) 10%
- •C) 50%
- •D) 75%
- •E) 90%
- •F) 95%
- •G) 99%

The Elements

Atomic nuclei:

Z = Number of protons

N = Number of neutrons

A = Nucleons = Mass number = Z + N

¹H = Normal hydrogen nucleus (proton)

²H = Deuterium (hydrogen isoptope)

⁴He = Normal Helium

X, Y, Z

- •X: Mass fraction of Hydrogen (most common element in the Universe). Here, now: X ≈ 0.71
- Y: Mass fraction of Helium (second most common element in the Universe)
 Here, now: Y ≈ 0.27
- Z: Mass fraction of all heavier elements combined. Also known as "Metallicity". Here, now: Z ≈ 0.02

Abundances in Astronomy

 $[A/B] = \log_{10} \left(\frac{\text{(number of A atoms/number of B atoms)}_{\text{object}}}{\text{(number of A atoms/number of B atoms)}_{\text{sun}}} \right)$

- Common examples:
 - [Fe/H], [O/H] These two are often carelessly referred to as 'metallicities'
- •[Fe/H] = -1 means that the object you're looking at only has 10% Iron (relative to hydrogen) compared to the Sun.

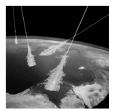
The Light Elements

Created during Big Bang Nucleosynthesis, roughly in the first three minutes after the Big Bang:

- ²H (Deuterium, D), ³H (Tritium)
- •3He, 4He
- •⁶Li, ⁷Li
- 7Be, 8Be (Unstable, decays back into Li)

Note: BBNS required to explain abundances of ⁴He and Deuterium!

The Heavy Elements


- •Essentially all elements with A>7 are created through
 - Stellar nucleosynthesis
 - Supernova nucleosynthesis

Fusion: $H \rightarrow He \rightarrow Heavier$ elements

Cosmic Ray Spallation

- Nucleosynthesis due to high-energy impacts of cosmic rays
- •Can form ³He + certain isotopes of Li, Be, B, Al, C, Cl, I and Ne

Important BBNS Reactions I: Proton-neutron freezeout

Consider the Universe at t ≈ 0.1 s...

Pair production:

 $\gamma + \gamma \iff e^- + e^+$

n and p are held in equlibrium with each other:

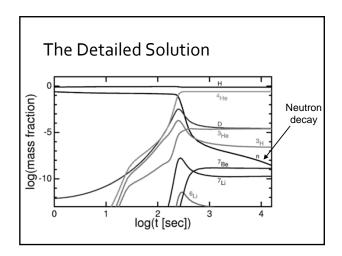
 $n + v_e \Leftrightarrow p + e^-$

 $n + e^+ \Leftrightarrow p + \overline{\nu}_e$

Neutrinos freeze out of these reactions at t ~1 s \rightarrow Neutron-to-proton ratio frozen at $n_r/n_p \approx 0.2$ Then follows neutron decay:

 $n \Rightarrow p + e^- + \overline{\nu}$

Important BBNS Reactions II: Deuterium and Helium synthesis


Consider the Universe at $t \approx 2$ —300 s...

$$p + n \Leftrightarrow d + \gamma$$

The rightward direction starts to dominates once the photon temperature has dropped below the 2.22 MeV binding energy of Deuterium. Serious production of D does not start until $t \approx 300$ s.

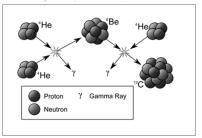
Once we have Deuterium, several routes allow the formation of Helium:

$$\begin{array}{lll} d+n \longrightarrow H^3 + \gamma & d+d \longrightarrow He^3 + n & d+d \longrightarrow He^4 + \gamma \\ H^3 + p \longrightarrow He^4 + \gamma & d+d \longrightarrow H^3 + p \\ d+p \longrightarrow He^3 + \gamma & H^3 + d \longrightarrow He^4 + n \\ He^3 + n \longrightarrow He^4 + \gamma & He^3 + d \longrightarrow He^4 + p \end{array}$$

The Beryllium Bottleneck

•No stable nuclei with A=8 \rightarrow Prevents formation of heavier elements during BBNS

Even though you can form:


 $^{4}\text{He}+^{4}\text{He} \Rightarrow ^{8}\text{Be}$

⁸Be will decay back into He after just 3×10⁻¹⁶s

Yet we know that the Universe has somehow managed to make heavier elements...

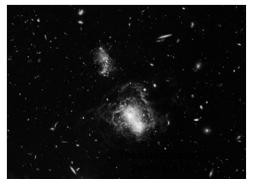
The Beryllium Bottleneck II

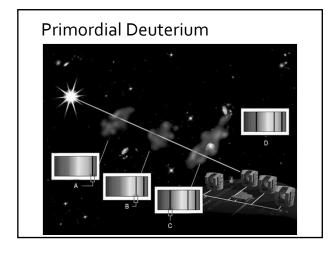
How do you make carbon? Solution: The Triple-Alpha process can take place in stars because of high temperatures (fast fusion of Helium)

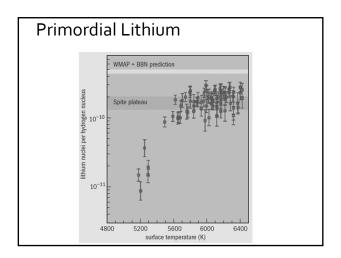
The Beryllium Bottleneck III

Triple-Alpha works because ⁴He, ⁸Be and ¹²C happen to have finely tuned energy levels.

Fred Hoyle (1950s) predicted a so far unknown excited level of ¹²C, to explain why Carbon-based entities such as ourselves exist. Experimentalists later proved him right!

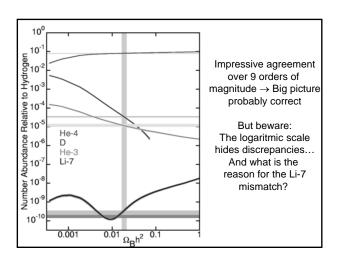



Primordial Abundances


To test BBNS, one needs to measure the primordial abundances of the light elements, i.e. measure the abundances in environments unaffected by chemical evolution

Helium: Low-metallicity HII regions
Deuterium: Quasar absorption lines
Lithium: Low-metallicitiy stars

Primordial Helium



BBNS – A Big Bang Success Story

- Big Bang explains primordial abundances of the light elements
- The abundances of the light elements agree with predictions over 9 orders of magnitude!
- \bullet The resulting $\Omega_{\rm b}$ is in accord with the result from other methods

This is how the success story is usually told – but there may be more to this than meets the eye...

