
Cosmology 2017

Exercises with solutions – batch I

1. Learning to use the fluid equation: The density evolution of the Universe

Use the fluid equation ǫ̇+3 ȧ
a (ǫ+P ) = 0 and the equation of state P = wǫ to derive a proportionality

relation between mass density and scale factor in the case of
a) a radiation dominated Universe
b) a matter dominated Universe
c) a Universe dominated by a cosmological constant.

Solution: The ǫ in the fluid equation

ǫ̇+ 3
ȧ

a
(ǫ+ P ) = 0 (1)

and the equation of state
P = wǫ (2)

represents energy density. We are, however, here asked to derive the relation between mass density
ρ and the scale factor a. Luckily, the conversion between energy density and mass density is simply
a question of applying ǫ = ρc2 (think E = mc2 and divide both sides by the volume), so you can
safely carry out all the required algebra with the energy density versions of (1) and (2) and apply
the conversion between ǫ and ρ at the very end.

Let’s get cracking! By inserting (2) into (1), you get:

ǫ̇ = −3(1 + w)
ȧ

a
ǫ (3)

Hmm... You wanted ǫ as a function of a, but this expression also contains ǫ̇ and ȧ, so how does
this help exactly? Well, there is a standard trick you can apply in situations like these! First
rewrite (3) by moving ǫ and ǫ̇ to the left-hand side:

ǫ̇

ǫ
= −3(1 + w)

ȧ

a
. (4)

Now integrate both sides (recalling that ln f(x) is the primitive function of f ′(x)/f(x)):

ln ǫ = −3(1 + w) ln a+ C1, (5)

where C1 is a constant. Now exponentiate both sides:

ǫ = exp(−3(1 + w) ln a) · exp(C1) (6)

This may seem even more complicated than before, but there are some simplifications to be made:

exp(−3(1 + w) ln a) = exp(ln a−3(1+w)) = a−3(1+w), (7)

and exp(C1) is just a constant anyway (let’s call it C2), so (6) simplifies to:

ǫ = C2a
−3(1+w). (8)

Because of the simple ǫ = ρc2 conversion, the proportionality relation between mass density ρ and
scale factor then becomes:

ρ ∝ a−3(1+w). (9)

Now, we’re finally in good shape to address the detailed density evolution of specific components
of the Universe.
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a) According to statistical mechanics, radiation has an equation of state parameter w = 1/3, so the
proportionality relation (9) between mass density and scale factor for radiation-like components
of the Universe becomes:

ρrad ∝ a−4. (10)

b) Non-relativistic matter exhibits zero pressure, so (2) implies w = 0. Expression (9) then reduces
to:

ρM ∝ a−3 (11)

c) A cosmological constant Λ has w = −1, which means that (9) reduces to:

ρΛ ∝ a0 (12)

In other words, ρΛ does not change with a (or time) - the mass/energy density of this component
stays the same even though the Universe is expanding!
Comment: The scale factor a gets bigger as the Universe grows. Hence, the density of both
radiation (10) and matter (11) get diluted with the expansion of the Universe, whereas the cos-
mological constant density (12) remains the same (that’s why it’s called a “constant”). Hence,
even if matter and radiation initially rule the Universe, Λ will become the dominant component
over time.
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2. Learning to use the Friedmann equation: The age of the Universe

Starting from the Friedmann equation, derive an expression for the age of the Universe t(z), in
the case of a standard cosmological model including the parameters Ωrad, ΩM, ΩΛ, Ωtot.

a) What does the relation for t(z) reduce to in the case of an Einstein-de Sitter Universe?
b) What is the current age of the Universe if Ωrad = 8.4×10−5, ΩM = 0.3, ΩΛ = 0.7, Ωtot ≈ 1.0?

Solution: When faced with this problem, many students immediately give up, since the Fried-
mann equation (4.20 in the textbook)

H(t)2 =
8πG

3c2
ǫ(t)−

κc2

R2
0a(t)

2
(13)

does not appear to contain any explicit time variable t. Luckily, there are time dependences in
the Friedmann equation that you can exploit to extract t – but it will take quite a bit of algebra
to get there.

One can show that the following relation (see 4.36 in the textbook) holds between Ωtot (where
Ωtot is the sum of the Ωs that you care to consider in your cosmological model: Ωtot = ΩΛ+ΩM+
Ωrad...) and the cosmic curvature κ:

κ

R2
0

=
H2

0

c2
(Ωtot − 1) (14)

Inserting (14) into (13) gives:

H(t)2 =
8πG

3c2
ǫ(t)−

H2
0

a(t)2
(Ωtot,0 − 1). (15)

Now, recall that the critical energy density (4.30 in the textbook) is given by

ǫc =
3c2

8πG
H(t)2 (16)

Divide (15) by H2
0 on both sides and use (16) ⇒

H(t)2

H2
0

=
ǫ(t)

ǫc,0
+

1− Ωtot,0

a(t)2
(17)

At this point, you can split ǫ(t) into as many energy components that you care to consider in your
cosmological model. In this case, we’ll settle for radiation, matter and a cosmological constant Λ:

ǫ(t) = ǫrad(t) + ǫM(t) + ǫΛ(t) (18)

Inserting (18) into (17) then gives:

H(t)2

H2
0

=
ǫrad(t) + ǫM(t) + ǫΛ(t)

ǫc,0
+

1− Ωtot,0

a(t)2
(19)

As derived in the solution to exercise 1, the three components we consider exhibit the following
scale factor dependencies:

ǫrad ∝ a−4. (20)

ǫM ∝ a−3 (21)

ǫΛ ∝ a0 (22)

If we insert (20), (21) and (22) into (19) and exploit Ωi = ǫi/ǫc, we get:

H(t)2

H2
0

= Ωrad,0a
−4 +ΩM,0a

−3 +ΩΛ,0 + (1− Ωtot,0)a
−2 (23)
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This is all very nice, but there is still no explicit time dependence! Well, here comes the magic:

H(t) =
ȧ

a
=

1

a

da

dt
(24)

If you use this relation for H(t) and insert it into (23), we get

da

dt
= aH0

(

Ωrad,0a
−4 +ΩM,0a

−3 +ΩΛ,0 + (1− Ωtot,0)a
−2

)1/2
(25)

In general:

t(a) =

∫ a

0

dt

da
da (26)

If we take the inverse of da/dt in (25) we get dt/da which we can insert into (26), with the result:

t(a) =
1

H0

∫ a

0

da

(Ωrad,0a−2 +ΩM,0a−1 +ΩΛ,0a2 + (1− Ωtot,0))
1/2

(27)

This is t(a), but we need t(z). To make the transition, we need to realize that

da =
da

dz
dz (28)

and

a =
1

1 + z
⇒

da

dz
= −

1

(1 + z)2
(29)

If we insert this into (27) and transform the integration limits, we arrive at the final expression:

t(z) =
1

H0

∫

∞

z

dz

(1 + z) [Ωrad,0(1 + z)4 +ΩM,0(1 + z)3 +ΩΛ,0 + (1− Ωtot,0)(1 + z)2]
1/2

. (30)

a) In the Einstein-de Sitter Universe, we have Ωrad,0 = 0, ΩM = 1.0, ΩΛ = 0 ⇒ Ωtot = 1. In this
case, (30) reduces to:

t(z) =
1

H0

∫

∞

z

dz

(1 + z)5/2
=

2

3H0(1 + z)3/2
(31)

At the current epoch (z = 0), the age of the Universe in the Einstein-de Sitter Universe then
becomes:

t0 =
2

3H0
(32)

All you need to do is to plug your adopted value of H0 into (32), but unless you first convert H0

from [km s−1 Mpc−1] into [s−1], the resulting units will be pretty hard to interpret.
H0 = 70 km s−1 Mpc−1 = 70 · 1000/(106 · 3.086× 1016) = 2.2683× 10−18 s−1

When H0 in these units is applied to (32) we get t0 ≈ 2.939× 1017 s or ≈ 9.3 Gyr

b) To solve (30) for the Benchmark model, you need to use numerical integration. On the course
hompage, there is a small Matlab script that allows you do this. For Ωrad = 8.4×10−5, ΩM = 0.3,
ΩΛ = 0.7, Ωtot ≈ 1.0, we get t0 ≈ 13.1 Gyr. This is somewhat smaller than the 13.8 Gyr often
quoted in the literature, but this is because the currently favoured cosmological parameters are
slightly different from the ones used here.
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3. Cosmological distances

Consider a light source at a redshift of z = 3 in an Einstein-de Sitter Universe.
a) How far has the light from this object traveled to reach us?
b) How distant is this object today?

Solution:
a) The distance experienced by a photon on its path towards us is given by the so-called distance
by light-travel time Dc:

Dc = c∆t, (33)

where ∆t is the time interval between the epoch when the light was emitted and the epoch when
the light was detected. In our case:

∆t = t0 − t(z), (34)

where t0 is the current age of the Universe and t(z) is the age of the Universe when the light was
emitted (at redshift z). Inserting (34) into (33) gives:

Dc = c(t0 − t(z)). (35)

In an Einsten-de Sitter Universe (i.e. ΩM = 1.0, ΩΛ = 0.0), the age of the Universe at redshift z
is (see exercise 2a for derivation):

t(z) =
2

3H0(1 + z)3/2
. (36)

The age of the Universe at the current time t0 then becomes:

t0 =
2

3H0
, (37)

since the redshift is z = 0 at the current epoch. Inserting (36) and (37) into (35) gives us the final
expression for the distance by light-travel time in an Einstein-de Sitter Universe:

Dc =
2c

3H0
(1− (1 + z)−3/2). (38)

Plugging in the numbers:
H0 = 70 km s Mpc−1, z = 3 in (38) ⇒ Dc ≈ 2.5 Gpc or ≈ 8.1 Gly.

b) The distance to this object today is given by the proper distance

dp = c

∫ t0

t(z)

dt

a(t)
(39)

To calculate this, we need an expression for the time dependence of the scale factor a(t). Luckily,
(36), which describes t(z) – the age of the Universe at redshift z – can quite easily be manipulated
to give us a(t). Recall that the definition fo the scale factor a is:

a =
1

1 + z
(40)

By inserting (40) into (36), we get:

t(z) =
2a3/2

3H0
. (41)

Extracting a from (41) yields:

a(t) =

(

3H0t(z)

2

)(2/3)

(42)
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Please note that in the currently favoured cosmology (ΩM ≈ 0.3, ΩΛ ≈ 0.7), expression (42) would
take on a far more complicated form.

Inserting (42) into (39) gives us:

dp(t0) = c

(

2

3H0

)2/3 ∫ t0

t(z)

t−2/3dt (43)

If you solve this integral, you get:

dp(t0) = 3c

(

2

3H0

)2/3

(t
1/3
0 − t(z)1/3]). (44)

Finally, by inserting (37) and (36) into (44) we get the expression:

dp(t0) =
2c

H0

[

1−
1

(1 + z)1/2

]

(45)

Plugging in the numbers:
H0 = 70 km s−1 Mpc−1 and z = 3 in (45) ⇒ Dc ≈ 4.2 Gpc or ≈ 14 Gly. Please note that this
distance is considerably larger than the distance that light has actually travelled from this object
to reach us. This happens because of the expansion of the Universe – the object has continued to
receed further from us after the light we now receive was emitted.
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4. Standard candles

Estimate the expected apparent magnitude mB of a supernova type Ia (absolute magnitude MB ≈

−19.6) at a redshift of z = 0.8 in a Universe described by ΩM = 0.3, ΩΛ = 0.7, H0 = 70 km s−1

Mpc−1. Cosmological k-corrections, band-pass corrections and dust effects may be neglected.

Solution: Eq. (6.49) in the textbook describes the relation between the apparent magnitude m
and absolute magnitude M of a high-redshift light source:

m−M = 5 log10(
dL

1 Mpc
) + 25, (46)

where dL is the luminosity distance. The luminosity distance for a flat Universe filled with non-
relativistic matter and a cosmological constant Λ is given by:

dL = (1 + z)
c

H0

∫ z

0

dz

[ΩM(1 + z)3 +ΩΛ]
1/2

. (47)

It may be convenient to be able to solve this integral numerically. On the course homepage, there’s
a link to a small piece of code that demonstrates how numerical integration can be done in Matlab
(freely available for all Uppsala University students).

Plugging in the numbers:
Inserting ΩM = 0.3, ΩΛ = 0.7, c = 3× 108 m s−1, H0 = 70 km s−1 Mpc−1 into (47) gives dL ≈ 5
Gpc. Inserting this luminosity distance into (46) and MB = −19.6 then gives mB = 23.8.

Comment: The relation (46) is formally valid for bolometric magnitudes – i.e. magnitudes
derived by integrating over the whole electromagnetic spectrum of the source. When we are
consider the flux within a specific wavelength range (the B band in our case), additional corrections
should be applied. The k-correction is usually defined to take both in-band effects (i.e. the fact
that you are not capturing the whole spectrum in your observations) and the redshifting of the
spectrum (the fact that the spectral features you detect in your B filter were emitted at wavelengths
that were smaller by a factor (1+z) when emitted). However, since the textbook does not treat
such corrections at all, we will take (46) to suffice throughout this course - just remember to look
into the k-correction when attempting something like this professionally.
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5. Matter-radiation equality

Estimate the redshift at the transition from radiation to matter domination, assuming a ΩM = 0.3,
ΩΛ = 0 cosmology.

Solution: As derived in the solution to exercise 1, the radiation density and matter density
exhibit the following scale factor dependencies:

ρrad ∝ a−4. (48)

ρM ∝ a−3 (49)

These can be converted from ρ(a) to ρ(z) using

a =
1

1 + z
. (50)

By inserting (50) into (48) and (49), and scaling from the present-day densities ρrad,0 and ρM,0 we
get:

ρrad = ρrad,0(1 + z)4. (51)

ρM = ρM,0(1 + z)3 (52)

In this exercise, we are interested in the transition from radiation to matter domination, i.e. the
epoch when ρM = ρrad, so let’s explore when this equality is met by setting (51) equal to (52):

ρrad = ρM ⇒ ρrad,0(1 + z)4 = ρM,0(1 + z)3. (53)

If you extract z, you then get:

zeq =
ρM,0

ρrad,0
− 1. (54)

Now, remember that Ω = ρ/ρc and use this to rewrite (54) ⇒

zeq =
ΩM,0

Ωrad,0
− 1. (55)

Plugging in the numbers:
ΩM = 0.3, Ωrad ≈ 8.4× 10−5 in (55) ⇒ zeq ≈ 3570.

Erik Zackrisson, August 2017
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