
Cosmology 2017

Exercises with solutions – batch II

1. Dark energy and the big rip

If the dark energy has an equation of state w < −1, the Universe may be ripped apart as the
scale factor a → ∞ when t → tRip. Derive an analytical expression for tRip, under the assumption
that the Universe has a flat geometry and is currently dominated by dark energy with constant
w. Predict the time remaining before the Big Rip, in scenarios where:

a) w = −1.1
b) w = −1.5
c) w = −2.0

Solution:
In exercise 1 of exercise batch I, we concluded that the energy density of cosmological energy
components evolve with scale factor a in the following way:

ǫ ∝ a−3(1+w). (1)

Please note that for dark energy components with w < −1, this implies that the energy density
of dark energy actually increases as the Universe expands (“phantom energy”!). In exercise 2 of
batch I, we also derived the following form of the Friedmann equation:

H(t)2

H2
0

=
ǫ(t)

ǫc,0
+

1− Ωtot,0

a(t)2
. (2)

Assuming Ωtot,0 = 1 (flat geometry) and that the energy density of the Universe is dominated by
dark energy (ǫ ≈ ǫDE, we can insert (1) into (2) to get:

H(t)2

H2
0

=
ǫDE,0a

−3(1+w)

ǫc,0
= ΩDE,0a

−3(1+w). (3)

Now, let’s use the same trick as in exercise 2 of batch I to extract an explicit time dependence...
First recall that the Hubble parameter is defined as:

H(t) =
ȧ

a
=

1

a

da

dt
. (4)

Inserting (4) into (3) gives:
da

dt
= H0 (ΩDE,0)

1/2
a−

3w
2

−
1
2 . (5)

Rearrangement of (5) now leaves us with:

dt =
da

H0 (ΩDE,0)
1/2

a−
3w
2

−
1
2

. (6)

The time of the Big Rip, tRip is defined as the time when a → ∞, so let’s integrate both sides of
(6) and use t = tRip and a = ∞ as upper integration limits:

∫ trip

t0

dt =
1

H0 (ΩDE,0)
1/2

∫

∞

a0=1

da

a−
3w
2

−
1
2

. (7)

If we solve this, we get:

trip − t0 =
2

3H0(ΩDE,0)1/2(w + 1)

[

a
3
2
(w+1)

]

∞

1
(8)
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In the case of w < −1, this simplifies to:

trip − t0 = −

2

3H0(ΩDE,0)1/2(w + 1)
(9)

Plugging in the numbers: If we adopt H0 = 70 km s−1 Mpc−1 and ΩDE,0 = 1.0 (the latter
may seem a bit stupid, but otherwise the Universe would not be flat given our assumptions), we
can calculate trip − t0, i.e. the time remaining until the Big Rip as:
a) w = −1.1 → trip − t0 ≈ 93 Gyr
b) w = −1.5 → trip − t0 ≈ 19 Gyr
c) w = −2.0 → trip − t0 ≈ 9 Gyr
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2. Big bang nucleosynthesis

When the reactions that convert protons into neutrons fall out of equilibrium (tuniverse ∼ 1 s old),
nn

np

≈ 1/5. Some of the neutrons will however decay back into protons before the formation of 4He.

Estimate the mass fraction of 4He formed if this is assumed to take place when tuniverse ≈ 180 s.

Solution: In astrophysics, the baryonic mass fraction locked up in helium is usually denoted Y .
If we make the approximation that the masses of the nucleons (protons and neutrons) are equal,
then the primordial abundance of 4He, can be expressed as:

Y (4He) ≈
4n4He

nn + np
, (10)

where n4He is the number density of 4He nuclei, nn is the number density of neutrons and np is
the number density of protons. If we make the simplifying assumption that all neutrons end up
in 4He, (10) can be rewritten as:

Y (4He) ≈
4(nn/2)

nn + np
=

2(nn/np)

1 + (nn/np)
. (11)

The (nn/np) ratio is fixed at (nn/np) ≈ 0.2 at the point where neutrinos decouple from neutrons
and protons (∼ 1 s after the Big Bang). If all the 4He nuclei would from at this time, we would
end up with a primordial 4He fraction of Y (4He) ≈ 2 × 0.2/(1 + 0.2) or ≈ 0.33. However, most
of the 4He nuclei do not form quite this early, and some of the neutrons will therefore decay back
into protons before 4He have time to form.

If we use nn,0 to denote the neutron density directly after the point where neutrinon freeze-
out of reactions with neutrons and protons, the number density nn at some later time t can be
expressed as:

nn = nn,0 exp(−t/τ), (12)

where τ is the mean lifetime of free neutrons. When the neutrons decay, they decay into protons,
so the number density of protons np at time t is boosted compared to the number density np,0 at
freeze-out:

np = np,0 + nn,0(1− exp(−t/τ)). (13)

To derive the neutron-to-proton ratio at time t we simply divide (12) by (13). After some rear-
ranging, we get:

nn

np
=

1

exp(t/τ)(1 + np,0/nn,0)− 1
. (14)

Plugging in the numbers: The mean lifetime of free neutrons is about 15 minutes, and modern
estimates place it at τ ≈ 888 s (there is some controversy regarding the exact value, but it would
not have any significant impact on our calculations). If we adopt (np,0/nn,0) ≈ 1/0.2 = 5 and
assume that all 4He instantaneously forms 180 s after the Big Bang (at t ≈ 180− 1 = 179 s after
neutrinos stop talking to protons and neutrons), (14) gives Y (4He) ≈ 0.26, which is somewhat
lower than the Y (4He) ≈ 0.33 ratio we would get if neutron decay were not considered.

Comment: In real life, 4He isn’t instantaneously formed, and the freeze-out ratio isn’t exactly
nn,0/np,0 = 0.2. More sophisticated calculations therefore tend to favour a primordial 4He mass
fraction of Y (4He) ≈ 0.25, which is consistent with modern measurements of the Helium abundance
in near-pristine gas.
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3. The size-redshift relation

Assuming an Einstein-de Sitter Universe, how many arcseconds would a galaxy with diameter 3
kpc span in the sky, assuming that it is located at redshift a) z = 1?; b) z = 10?

Solution:
The relation between the linear size l of an object at redshift z and the angle Θ it subtends in the
sky is given by (6.32 in the textbook):

Θ =
l

dA(z)
, (15)

where dA(z) is the angular diameter distance to the object. The angular diameter distance is
related to the luminosity distance dL(z) through the following relation (6.36 in the textbook):

dA(z) =
dL(z)

(1 + z)2
. (16)

Inserting (16) into (15) gives:

Θ =
l(1 + z)2

dL(z)
. (17)

Now, recall the expression for the luminosity distances for a flat Universe from exercise 4 in batch
I:

dL = (1 + z)
c

H0

∫ z

0

dz

[ΩM(1 + z)3 +ΩΛ]
1/2

. (18)

In the Einstein-de Sitter Universe where ΩΛ = 0 and ΩM = 1, this simplifies to:

dL = (1 + z)
c

H0

∫ z

0

dz

(1 + z)3/2
. (19)

If you solve this integral, you get:

dL = (1 + z)
2c

H0

[

1− (1 + z)−1/2
]

. (20)

Inserting (20) into (17) gives:

Θ =
l H0(1 + z)

2c
[

1− (1 + z)−1/2
] . (21)

Now, Θ will in this case be given in radians. If you want it in arcseconds, you need to use the
following conversion:

Θarcsec = 1.296× 106
Θ

2π
, (22)

where the numerical factor 1.296 × 106 stems from the fact that a full circle spans 360 degrees
and each degree contains 3600 arcseconds (360× 3600 = 1.296× 106). If we apply (22) to (21) we
arrive at the final expression:

Θarcsec =
1.296× 106 l H0(1 + z)

4πc
[

1− (1 + z)−1/2
] . (23)

Plugging in the numbers:
Using l = 3 kpc, H0=70 km s−1 Mpc−1, c = 3× 105 km s−1 in (23) gives:
a) Θarcsec ≈ 0.49 arcsec for z = 1
b) Θarcsec ≈ 1.1 arcsec for z = 10

Comment: This illustrates that, quite counter-intuitively, an expanding Universe, an object with
fixed linear size can appear larger in the sky if it is located further away! For this particular cos-
mology, objects with a fixed linear size will appear to shrink in angular size out to a redshift of
z ≈ 1.25, and then start to grow at even greater redshifts.
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4. The flatness problem I.

Use the Friedmann equation

(
ȧ

a
)2 =

8πG

3c2
ǫtot(t)−

κc2

R2
0a(t)

2

to derive

Ωtot(t)− 1 ∝

1

a(t)2H(t)2

Solution:
At any epoch, Ωtot(t) can be described as (4.33 in the textbook):

Ωtot(t) =
ǫtot(t)

ǫc(t)
, (24)

with ǫc(t) given by (4.30 in the textbook):

ǫc(t) =
3c2

8πG
H(t)2. (25)

If we combine (24) and (25), we get:

ǫtot(t) =
3c2

8πG
H(t)2Ωtot(t). (26)

If we insert (26) into the Friedmann equation

(
ȧ

a
)2 =

8πG

3c2
ǫtot(t)−

κc2

R2
0a(t)

2
, (27)

we arrive at:

(
ȧ

a
)2 = H(t)2Ωtot(t)−

κc2

R2
0a(t)

2
. (28)

Now, recall that

H(t) =
ȧ

a
, (29)

and use this to rewrite (28). We then get, after rearranging the terms:

Ωtot(t)− 1 =
κc2

R2
0a(t)

2H(t)2
. (30)

Since κc2

R2
0

is just a constant, (30) implies that

Ωtot(t)− 1 ∝

1

a(t)2H(t)2
. (31)

And there you have it!
Hint: It is entirely possible that (30) could turn out to be quite handy when solving hand-in
exercise 6 (The flatness problem II)...

Erik Zackrisson, August 2017
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