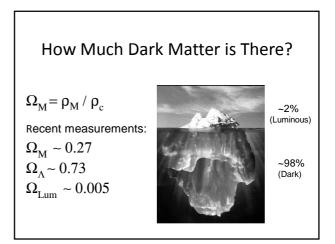
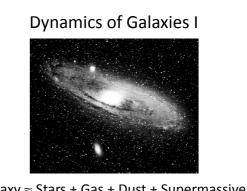


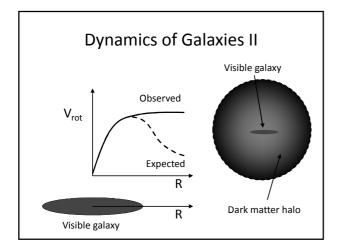
Galaxies AS7007, 2012 Lecture 3: Dark matter in galaxies


Outline I

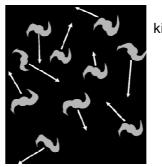
- What is dark matter?
- How much dark matter is there?
- How do we know it exists?
- Dark matter candidates
- The Cold Dark Matter (CDM) model



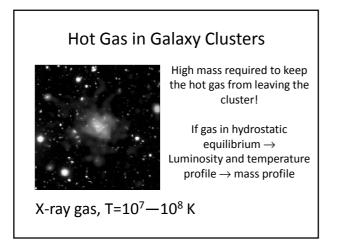
Fritz Zwicky (1933): Dark matter in the Coma Cluster

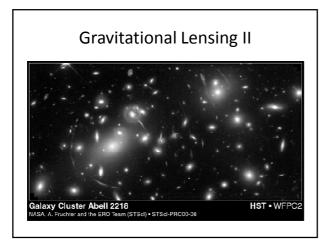


How Do We Know it Exists?

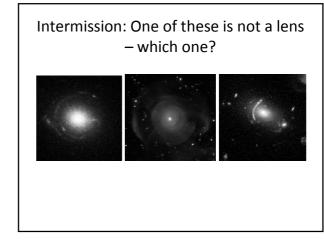

- Cosmological Parameters + Inventory of luminous material
- Dynamics of galaxies
- Dynamics and gas properties of galaxy clusters
- Gravitational Lensing

 $\label{eq:Galaxy} \texttt{Galaxy} \approx \texttt{Stars} + \texttt{Gas} + \texttt{Dust} + \texttt{Supermassive}$ Black Hole + Dark Matter

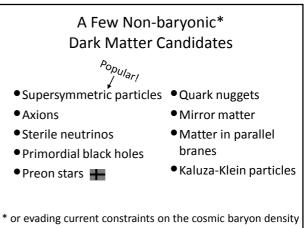

Dynamics of Galaxy Clusters

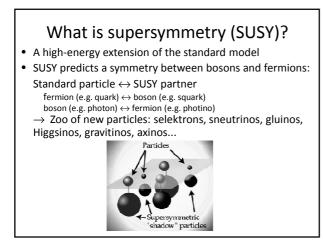

Balance between
kinetic and potential
energy
$$\rightarrow$$

Virial theorem:
 $\langle v^2 \rangle R$


 $M_{\rm vir} = \frac{\sqrt{G}}{G}$

Check out Sect. 6.2.5 in Schneider for details



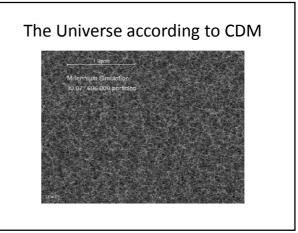


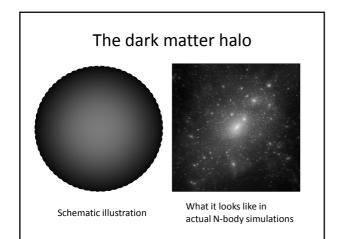
Weakly Interacting Massive Particles (WIMPs)

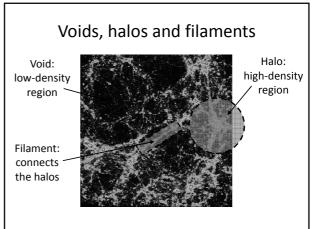
- Interactions through weak force and gravity only \rightarrow dark matter transparent
- Weak-scale interactions \rightarrow right cosmological density to be dark matter ("The WIMP miracle")
- Massive (GeV to TeV scale)
- No WIMP candidate in standard model of particle physics
- The canonical WIMP is a SUSY particle (often a neutralino), but not all WIMP candidates are SUSYs

WIMPs in your morning coffee

Generic assumptions (~100 GeV WIMPs) \rightarrow Handful of WIMPs in an average-sized coffee cup

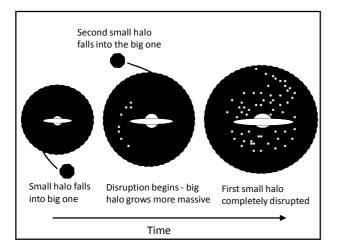

Hot and Cold Dark Matter

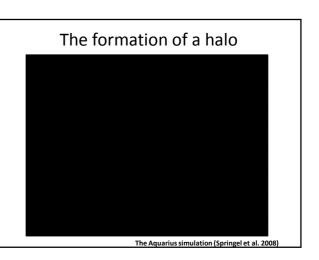

- Hot Dark Matter (HDM)


 Relativistic early on (at decoupling)
 Ruled out by observations
- Cold Dark Matter (CDM)
 - Non-relativistic early on (at decoupling)
 The standard model for the non-baryonic dark matter
 - –Successful in explaining the formation of large scale structure (galaxies, galaxy clusters, voids and filaments)

Additional Assumed CDM Properties

- Collisionless interacts mainly through gravity
- Dissipationless cannot cool by radiating photons
- Long-lived particles
- Behaves as perfect fluid on large scales

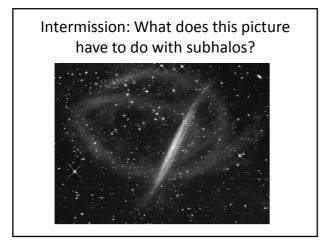


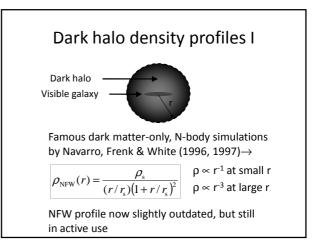

A hierarchy of dark matter halos

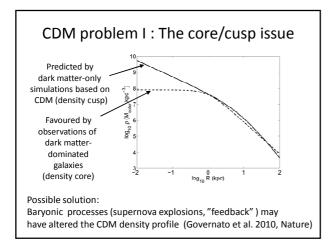
- All galaxy clusters and *almost* all galaxies form at the centre of dark matter halos
- Halo mass range: ~10⁻⁶ 10¹⁵ Msolar
 - M_{halo} > 10¹³ Msolar: Galaxy groups and clusters
 - $-M_{halo} \sim 10^{11} 10^{13}$ Msolar: Large galaxies
 - $-M_{halo} \sim 10^8 10^{11}$ Msolar: Dwarf galaxies
 - M_{halo} < 10⁸ Msolar: ??? Largely untested part of the CDM paradigm... The very first stars are predicted to form in these halos at z>15, but where are these halos now?

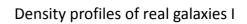
A hierarchy of dark matter halos II

- Halo mass range: ~10⁻⁶ 10¹⁵ Msolar
 - Lower cutoff depends on detailed properties of the dark matter particles, could be 10⁻¹² to 10⁷ Msolar, depending on the model
 - Mass function shape: Always far more low-mass halos than high-mass ones
 - Low-mass halos assemble first, then merge to form high-mass ones

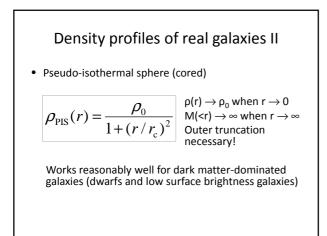


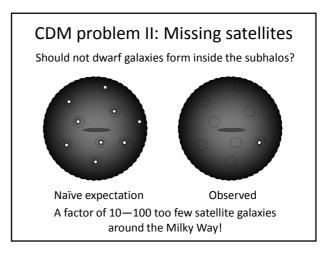

Subhalos


- Massive halos are assembled by the accretion of halos of lower mass
- Many accreted halos get disrupted in the tidal field of the halo they fell into, but some temporarily survive in the form of subhalos
- On average ~10% of the mass of a halo is in the form of subhalos at the current time


The tumultuous life of a subhalo

and, Kuhlen, Madau 2006



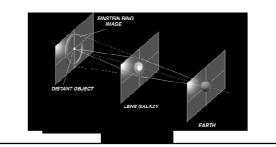

Singular Isothermal sphere

$$\rho_{\rm SIS}(r) = \frac{\rho(r_0)}{(r/r_0)^2}$$

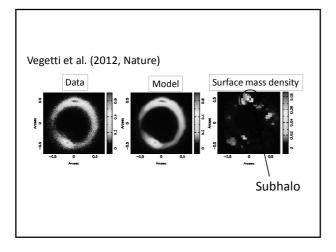
$$\begin{split} \sigma(r) &= \text{constant} \\ \rho(r) &\to \infty \text{ when } r \to 0 \\ M(< r) &\to \infty \text{ when } r \to \infty \\ \text{Outer truncation} \\ required! \end{split}$$

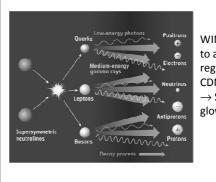
Works reasonably well for massive galaxies acting as strong gravitational lenses, probably due to baryon-domination in the centre

CDM problem II: Missing satellites

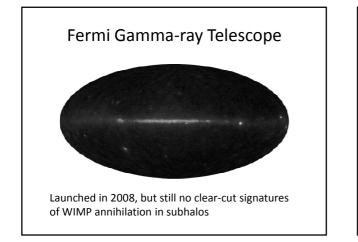

Possible solutions:

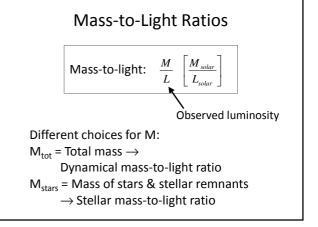
- Vanilla CDM incorrect alternative models (e.g. warm dark matter) produce fewer subhalos
- Star formation in low-mass subhalos inefficient → lots of ultrafaint or completely dark subhalos awaiting detection around the Milky Way

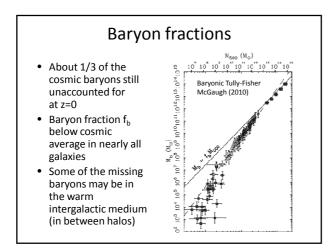

CDM problem II: Missing satellites


Confusing input from gravitational lensing:

• Lensing requires *more* subhalos, or at least a different halo mass function than predicted by CDM




WIMP annihilation


WIMPs predicted to annihilate in regions where the CDM density is high → Subhalos should glow in gamma-rays

Tidal dwarf galaxies

- TDGs form out of shredded disk material
- Only type of galaxy predicted to be nearly CDM-free
- But M/L high → Some form of dark matter still present?
- Dark baryons?

