

Dwarf Spheroidals (dSph)

- Almost no gas
- Very diffuse (can often see right through them)
- Old; no stars younger than 1—2 Gyr
- Metal-poor (Z<10% Z_{solar})
- Random motion dominates: $v_{rot}/\sigma_v < 1$
- Probably triaxial
- May have luminosities as low as globular clusters, but are bigger and have globular clusters of their own

Dwarf Ellipticals (dE) & Compact Ellipticals

- Dwarf Ellipticals:
 - Similar to dSph, but more luminous
 - Distinction somewhat unclear, many people write dE/dSph
- Compact Ellipticals:
 - Rare (example: M32 in Local Group)
 - High density
 - More rotationally supported than dE/dSph: $v_{rot}/\sigma_{v}{\geq}1$

Dwarf Irregulars

- Contain gas and young stars
- Metal-poor: (Z<10% Z_{solar})
- Some rotationally supported, some not: – Low L-systems: ν_{rot}/σ_v<1

 - High L-systems: v_{rot}/σ_v≈4−5

Indications of star formation I

- Recombination emission lines
- UV continuum
- IR thermal emission
- Radio continuum emission
- CO from molecular clouds

 When proton and electron recombine → cascade towards ground state → Recombination emission lines

• H α luminosity can be used to estimate the SFR:

 $SFR(M_{solar}/yr) = 7.9 \times 10^{-42} L_{H\alpha}(erg/s)$

- Measurements of H $\!\alpha$ & H $\!\beta$ luminosities can constrain the amount of dust reddening

Radio continuum emission

- Star-forming galaxies emit a lot of cmwavelength radio emission
- Posssible origin: synchrotron radiation from particles accelerated in supernova remnants
- Supernovas trace SFR \rightarrow cm-wavelength radiation trace SFR

Remember: Dust extinction is not an issue in radio observations

CO from Molecular Clouds

• Star formation starts in giant molecular $\mathsf{clouds} \to \mathsf{Molecules}$ (like CO) trace star formation

Feedback from Star Formation

- Gas ionized by massive stars – Gas must be cool to collapse
- Winds from Supernovae
 - Loosen up compressed regions
 - Removes gas from low-mass galaxies (blowout)

Star Formation Efficiency

Typically less than 10% of the available gas is converted into stars before feedback prevents further star formation Star formation rate (assumed constant Duration of star during star formation episode) Star formation episode) efficiency $\mathcal{E} = \frac{\text{SFR } \tau}{M_{\text{H}_2}} \leq 0.1$

Recommended Definitions of Starbursts

- Global starburst:
 - SFR high enough to consume the gas in less than one Hubble time over a size larger than a single HII-region
- Local starburst:
 - SFR increases by factor of 10 or more across an HII-region
 - Starbursts are transient phenomena unless new gas is added

Starburst galaxies

• Gas-consumption timescale:

$$t_{\rm gas} = \frac{M_{\rm gas}}{SFR}$$

- Typical galaxy: SFR~0.1 M_{solar}/yr
- Common, but dangerous starburst definition: SFR > 50 M_{solar}/yr

Starburst Galaxies

- Possible triggers:
 - -Mergers/collisions
 - -Interactions (controversial)
 - Large intergalactic gas clouds falling into a galaxy

Dust extinction II

- The Balmer decrement H $\alpha/{\rm H}\beta,$ can be estimate the amount of dust reddening in galaxies with emission lines
- Theory predicts $L_{H\alpha}/L_{H\beta}\approx 2.85$ from gas ionized by stars (Note: $L_{H\alpha}/L_{H\beta}$ is often written $H\alpha/H\beta$)
- Dust reddening $\rightarrow L_{H\alpha}/L_{H\beta}$ >2.85
- Knowing $L_{H\alpha}/L_{H\beta}$ and using an extinction curve (extinction as function of wavelength), dust reddening can be corrected for

The Closed-Box Model

- No gas added or lost from the system
- Yield, p:
 - Determines return of heavy elements to interstellar medium
 - Often defined as mass fraction of heavy elements returned per mass locked up in stellar remnants (black holes, neutron star, white dwarfs) and longlived, very low-mass stars

The Closed-Box Model

$$Z(t) = Z(0) + p \ln\left(\frac{M_{gas}(0)}{M_{gas}(t)}\right)$$
Prediction:
Gas-rich systems are metal-poor (e.g. dl)
Gas-poor systems are metal-rich (e.g. E)
However, dSph are gas-poor and metal-poor...

Relaxation of the Closed-Box Assumption

- Blow-out of gas by stellar winds
 - Mainly in low-mass systems (dwarf galaxies, globular clusters, first galaxies)
- Infalling gas
 - Intergalactic gas clouds (primordial metallicity)
 - Merger with gas-rich galaxy

• Type Ia supernovae: Fe (prolonged)

