Galaxies AS7007, 2012 Lecture 6: Active galaxies

Outline

- Characteristics of active galactic nuclei
- Variability-size relation
- Supermassive black holes
- Accretion disks
- Eddington luminosity
- Jets and lobes
- Synchrotron radiation
- Superluminal motion

Outline II

- Different types of active galactic nuclei
 - Quasars
 - Seyfert galaxies
 - LINERs
 - Radio galaxies
 Blazars
 - Blazars
- The unification model
- Quasar host galaxies
- · Claims of non-cosmological redshifts
- Quasar Absorption Systems

Characteristics of Active Galactic Nuclei

- High luminosity produced in small region
- Fast variability
- High fraction of polarized light
- Non-thermal spectrum: Not stars!
 - Synchrotron radiation
 - Emission-line ratios \rightarrow Ionization source more energetic than hottest known stars

Variability-Size Relation

- Fast variability indicates that the luminosity is produced inside a small region
- Light variations on scales down to 1 hour \rightarrow size smaller than the Solar system

• Schwarzschild radius:

Supermassive Black Holes

- MW has a ~10⁶ Msolar mass SMBH, which is expected given its bulge luminosity and mass
- Active galaxies appear to follow the same relations $\rightarrow M_{\text{SMBH}}$ does not determine if a galaxy is active or not

Accretion Disks

Magnetic field channel matter into relativistic jets

SMBH

Angular momentum of infalling material→ matter spirals inward in an accretion disk

Eddington Luminosity

Too high radiation pressure of AGN may overcome inward gravitational force \rightarrow upper limit on AGN luminosity which still allows material to fall inwards

$$L_{\rm E} \approx 30000 \frac{M}{M_{\rm solar}} L_{\rm solar}$$

Note: L_E assumes spherical accretion. Super-Eddington luminosities (a few times L_E) can be produced in accretion disks

- Mass M falling into a SMBH→ energy Mc² added
- Theoretical maximum: 42% of Mc² is converted into luminosity The rest increases the SMBH mass
- But typically, \leq 10% of Mc² is converted into luminosity
- SMBHs in a typical quasar grows with \geq 1 M_{solar}/yr
- Activity is expected to last for ~ 100 Myr \rightarrow M_{SMBH} \ge 10⁸ M_{solar}in faded quasars

Intermission I: Music from AGN

Dr Fiorella Terenzi

<u>Music from the Galaxies (1991):</u> Radio waves from the active galaxy UGC 6697 converted into music

The number densities of active galaxies at z=0	
Туре	Number/Gpc ³
Spiral galaxies	~5×10 ⁶
E/S0 galaxies	$\sim 1 \times 10^{6}$
Seyfert galaxies $\sim 1 \times 10^5$	
Radio galaxies	~ 3×10 ³
Quasars	~ 100
Blazars	~ 80

- Radio-quiet quasars >10 times more common than radio loud ones
- Both broad and narrow lines

X-ray quasar with jet

Seyfert Galaxies

- "Low-luminosity quasars"
- Almost always in S- or SO-galaxies
- Seyfert 1 nuclei
 - Broad lines (allowed) & Narrow lines (forbidden)High optical luminosity
- Seyfert 2 nuclei
 - Narrow lines only, but with wingsLow optical luminosity

LINERs

- LINER = Low Ionization Nuclear Emission Line Region
- Low luminosities (lower than Seyfert 2)
- Exhibit lines which do not require very energetic power sources hot stars sufficient
- Many LINERs are probably starbursts, not genuine AGN

Radio Galaxies

- Milky Way: 10³⁰ W in radio
- Radio galaxies ≥ 10³⁴ W in radio
- Lobes and hot spots
- Always elliptical galaxies

Blazars

- The most rapid and large variations among AGN
- Originally:
 - BL Lac (very weak emission lines)
 - OVV = Optically violent variable (strong emission lines)
- Today: Blazar = BL Lac & OVVs
- Appear to be the most luminous objects in the Universe, but this is due to beaming
- Often completely featureless spectrum

 Emission-lines weak or absent
- The Unification Model Quasar Radio galaxy restriction discovery generative transformed to the overy galaxy

Intermission II: Music from AGN

NGC 4151 (1993): Rest-frame UV emission-line and continuum variability from the Seyfert galaxy NGC 4151 converted into music

Professor Nils Bergvall

Quasar Host Galaxies

• The AGN of a quasars typically outshines its host galaxy

 To study the host galaxy, one utilizes the fact that the AGN is a point source wheras the host is an extended object Quasar Host Galaxies • Point spread function (PSF): Describes how the light of a perfect point source is distributed on the detector (CCD) because of telescope imperfections, diffraction etc.

 Very challenging to build a SMBH by z=7 (less than 1 Gyr after the Big Bang) – exotic formation channel required?

