Galaxies AS7007, 2012 Lecture 7: Groups, clusters and lensing

Outline • Galaxy groups and clusters – Basic characteristics – Cluster classification – Galaxy content – The Butcher-Oemler effect – Galaxy clusters in our vicinity – Compact groups – Gas in groups and clusters – Mass estimates – The Sunyaev-Zeldovich effect

Outline II

- Gravitational lensing
 - General principle
 - Lens equations
 - Strong lensing
 - Rings, arcs and multiple images
 - Microlensing
 - Searching for compact objects
 - Weak lensing
 - Magnification bias
 - Multiply-imaged quasars

Galaxy groups and clusters I

- Around 50% of all galaxies are located in groups and clusters
- The rest are located in "The field"
- Characteristic group/cluster sizes: 1-10 Mpc
- Clusters: More than 30-50 giant galaxies
- Groups: Less than 30-50 giant galaxies

Galaxy groups and clusters II

- Clusters:
 - $-\sigma_{r}^{2}$ 700—1200 km/s
 - Masses 10¹⁴-10¹⁵ solar masses
- Groups:
 - σ_r~100—500 km/s
 - Masses 10¹³ solar masses
- Typical M/L ≈ 100—500
 - 10 times higher than in individual galaxies
 - Most dark matter is located between the galaxies

Cluster classification

Increasing

rareness

• Abell richness class:

- Class 0: 30-49 galaxies
- Class 1: 50-79
- Class 2: 80-129 - Class 3: 130-199
- Class 3: 130-199
- Class 5: ≥ 300
- Many other schemes in use:
 - Zwicky (Based on compactness)
 - Rood and Sastry (Based on dominant galaxy)
 Bautz-Morgan (Based on projected distribution of 10 brightest members)

Brightest Cluster Galaxies

- Limited luminosity range: $M_{v} \approx -22.8 \pm 0.28$
- Possibly useful as standard candles
- Some, but not all, are cD galaxies

Galaxy content

- Fraction of E/S0 galaxies depends on local galaxy density
- Groups and outskirts of clusters: Many S / SB
- Cluster cores:
 - Many E / SO
- Mass segregation (in analogy with stars in star clusters):
 - Massive galaxies close to centre
 - Light-weight galaxies further out

The Butcher-Oemler effect • More blue galaxies in high-z clusters than in

- More blue galaxies in high-z clusters than in low-z ones
- Blue galaxies: Irr / S / SB
- Red galaxies: E / SO
- Possible interpretation: Mergers - Irr / S / SB \rightarrow E / S0 over time

Galaxy groups & clusters in our vicinity

- Groups: Sculptur, Fornax, Centaurus A...
- Clusters: Virgo, Coma, Hydra, Centaurus, Perseus...

Galaxy groups & clusters in our vicinity II

- Virgo cluster
 - Nearest large galaxy cluster with more than 2000 galaxies brighter than $M_B{\approx}{\text{-}}14$
 - Extent ~ 3 Mpc
 - Velocity dispersion $\sigma_{R} \approx 600$ km/s
 - Distance 15-20 Mpc

Compact groups II

- Typically 4-7 galaxies inside few ~100 kpc
- Very often spirals
- Short predicted lifetimes (due to expected merging)
- ≈1/3 discordant redshifts
- Can injection of high-velocity members into these groups prevent mergers?

Why does the gas glow?

• Free-free radiation or Brehmsstrahlung (radiation from electrons accelerated by charged particles)

Why is the gas so hot?

- Galaxy motions
 - Consider a "gas of galaxies":
 - High cluster mass \rightarrow High galaxy velocities
 - $kT^{\sim}mv^2 \rightarrow$ High galaxy velocities imply high T
- Winds from supernova explosions inject additional kinetic energy into the gas

• Hence, high cluster mass \rightarrow high v \rightarrow high T \rightarrow High X-ray luminosity

Where does the gas come from?

- Mixture of:
 - Gas never captured by galaxies (primordial chemical abundances)
 - Gas (metal-enriched) ejected from galaxies by stellar winds and supernova explosions
- Gas metallicity: Z~10% Solar

Gravitational Lensing

- Strong Lensing
 - Rings
 - Multiple images
 - Arcs
- Microlensing
- Source magnification (changing over time)
- Weak Lensing
 - Statistical distortion of the shape of galaxies

Magnification bias

A flux-limited survey: Containing objects with fluxes higher than a certain magnitude threshold

True flux-limited distribution around massive foreground object

Observed flux-limited distribution around massive foreground object

Multiply-imaged quasars I

- Rare (only ~100 known with galaxy as lens)
- Useful for cosmology:
 - To measure Hubble constant
 - To measure mass and density profile of dark halo around lens galaxy
 - To study microlensing in lens galaxy (or its dark halo)
 - To study dust extinction in the lens galaxy

