Physics of Galaxies, 2015 10 credits Lecture 7: Groups, clusters and lensing

Outline: Galaxy groups & clusters

- Basic characteristics
- Gas and galaxy content
- •Clusters in our vicinity
- •The Sunyaev-Zeldovich effect

Outline: Gravitational lensing

- Basic principles
- •Different types of lensing: Strong, weak and micro
- Multiply-imaged quasars
- Cluster lensing

Galaxy groups and clusters I

- Around 50% of all galaxies at low redshift are located in groups and clusters – the rest are in "The field"
- Characteristic group/cluster sizes: 1—10 Mpc
- Clusters: More than 30—50 giant galaxies
- Groups: Less than 30—50 giant galaxies

Galaxy groups and clusters II

- Clusters:
 - σ_c~700—1200 km/s
 - Masses 1014—1015 M_O
- Groups:
 - σ_r ~100—500 km/s
 - Masses 1013 solar masses
- •Typical M/L ≈ 100—500
 - 10 times higher than in individual galaxies
 - Most dark matter is located between the galaxies

Cluster classification

- Abell richness class:
 - •Class o: 30-49 galaxies

 - •Class 1: 50-79 •Class 2: 80-129
 - •Class 3: 130-199

 - •Class 4: 200-299 •Class 5: ≥300
- Many other schemes in use:
- Zwicky (Based on compactness)
 Rood and Sastry (Based on dominant galaxy)
 Bautz-Morgan (Based on projected distribution of 10 brightest members)

Increasing

rareness

Brightest Cluster Galaxies

- Limited luminosity range: $M_{V}\approx$ -22.8 \pm 0.28 \rightarrow Possibly useful as standard candles
- Some, but not all, are cD galaxies

Galaxy content

- Fraction of E/So galaxies depends on local galaxy density
- Groups and outskirts of clusters: Many S / SB
- Cluster cores: Many E / So
- Mass segregation (in analogy with stars in star clusters):
 - Massive galaxies close to centre
 - Light-weight galaxies further out

The Butcher-Oemler effect

- More blue galaxies in high-z clusters than in low-z ones
- Blue galaxies: Irr / S / SBRed galaxies: E / So
- Possible interpretation: Mergers
 Irr/S/SB → E/So over time

+

=

?

Galaxy groups & clusters in our backyard

- Groups: Sculptur, Fornax, Centaurus A...
- Clusters: Virgo, Coma, Hydra, Centaurus, Perseus...
- Superclusters:
 Virgo supercluster,
 Hydra-Centaurus
 supercluster...

Galaxy groups & clusters in our backyard II

- Virgo cluster
 - Nearest large galaxy cluster with more than 2000 galaxies brighter than M_B≈-14
 - Extent ~ 3 Mpc
 - Velocity dispersion $\sigma_R \approx 600$ km/s
 - Mass ~1×10¹5 M_☉
 - Distance 15—20 Mpc

Virgo cluster & M87 (lower left) with foreground objects masked

The Laniakea Supercluster

- We belong to the Local Group, which belongs to the Virgo Supercluster, which belong to the (even bigger) Laniakea Supercluster
- Laniakea: "immeasurable heaven" in Hawaiian
- 100 000 galaxies and 300-500 groups and clusters over 160 Mpc total mass $\sim\!10^{17}\,M_{\odot}$

https://www.youtube.com/watch?v=rENyyRwxpHo

Compact groups

- Typically 4—7 galaxies inside few ~100 kpc
- Very often spirals
- Short predicted lifetimes (due to expected merging)
- ≈1/3 discordant redshifts
- Can injection of highvelocity members into these groups prevent mergers?

Gas in groups and clusters

Most baryonic material in groups and clusters is not stars, but hot gas

X-ray gas, T=107—108 K

Why does the gas glow?

Free-free radiation or Brehmsstrahlung (radiation from electrons accelerated by charged particles)

Why is the gas so hot?

- Galaxy motions
 - Consider a "gas of galaxies":
 - High cluster mass → High galaxy velocities
 - kT~mv² → High galaxy velocities imply high T
- Winds from supernova explosions inject additional kinetic energy into the gas

Why do the galaxies move so fast?

•Balance between kinetic and potential energy

The virial theorem: $M \approx$

Hence, high cluster mass → high v → high T
 → High X-ray luminosity

Where does the gas come from?

- Mixture of:
 - Gas never captured by galaxies (primordial chemical abundances)
 - Gas (metal-enriched)
 ejected from galaxies
 by stellar winds and
 supernova explosions
- Gas metallicity: Z~10% Solar

Gas in the Coma cluster

Mass estimates •X-ray spectrum \rightarrow T(r) Depends on the •X-ray luminosity \rightarrow ρ (r) radiation process $L = n_{\rm e} n_{\rm H} \Lambda(T)$ •Mass: Number densities $M(< r) = \frac{k_{\rm B}}{\mu m_p} \frac{r^2}{G \rho(r)} \frac{d}{dr} (-\rho T)$

The Sunyaev-Zeldovich effect II

- Measure S-Z → thickness of cluster
- Assume thickness=diameter
 → Linear size of cluster in sky
- Measure angular size of cluster in sky
- Combine angular and linear size → Distance

The S-Z effect is an important tool for cosmology!

Gravitational lensing

- Lensing basic stuff: What? Why? Where?
- What do you need it for?
 Want to probe the source, the lens, or the Universe?

Lensing – quick overview I

Overdensities of matter along line of sight \rightarrow

- Magnification
- Distorted morphology
- Shift in apparent position
- Multiple images
- Delays in time signals

Lensing - A tool...

- Magnification → Can detect sources too faint to be seen otherwise
- Multiple images, distortions time delays
 → Probes of structure and dust reddening along line(s) of sight
- Testing gravity & cosmology

... and a nuisance A couple of examples: • The flux you measure doesn't directly reflect the intrinsic luminosity • Can standard candles (e.g. type la supernovae) always be trusted? • Cosmic Microwave Background Radiation (CMBR) maps distorted

Lensed CMBR

Intrinsic CMBR

