Physics of Galaxies, 2015

10 credits
Lecture 7: Groups, clusters and lensing



*Basic characteristics
*Gas and galaxy content
*Clusters in our vicinity NI
*The Sunyaev-Zeldovich - * (- ..«
effect SN AR




*Basic principles

Different types of lensing:

Strong, weak and micro
*Multiply-imaged quasars
*Cluster lensing
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Galaxy groups and clusters |

* Around 50% of all galaxies at low redshift are located
in groups and clusters —the rest are in “The field”

* Characteristic group/cluster sizes: 12—10 Mpc
* Clusters: More than 30—50 giant galaxies
* Groups: Less than 30—50 giant galaxies
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*Clusters:
*G,~700—1200 km/s
* Masses 10*—10*> Mg

*Groups:
*G,~100—500 km/s
* Masses 1023 solar masses

*Typical M/L = 100—500
* 10 times higher than in
individual galaxies

* Most dark matter is located
between the galaxies



*Abell richness class:
*Class 0: 30-49 galaxies |
*Class 1: 5o-79 Increasing
*Class 2: 80-129 rareness
*Class 3: 130-199
*Class 4: 200-299
*Class5: =300

* Many other schemes in use:
« Zwicky (Based on compactness)
* Rood and Sastry (Based on dominant galaxy)

* Bautz-Morgan (Based on projected distribution of 10
brightest members)



* Limited luminosity range:
M,~-22.81+0.28 —>Possibly
useful as standard candles

*Some, but not all, are cD galaxies

AAT 60



* Fraction of E/So galaxies depends on local galaxy
density

* Groups and outskirts of clusters: Many S / SB
* Cluster cores: Many E /So

* Mass segregation (in analogy with stars in star
clusters):
* Massive galaxies close to centre
* Light-weight galaxies further out



*More blue galaxies in high-z clusters than in
low-z ones

*Blue galaxies: Irr /S [ SB
*Red galaxies: E/So

*Possible interpretation: Mergers
*Irr [S/SB — E/So over time
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* Groups:
Sculptur, Fornax,
CentaurusA...

e Clusters:
Virgo, Coma, Hydra,
Centaurus, Persevus...

e Superclusters:

Virgo supercluster,
Hydra-Centaurus
supercluster...




Galaxy groups & clusters in our backyard |l

*Virgo cluster

* Nearest large galaxy
cluster with more than |
2000 galaxies brighter e g e Ny
than Mg=-14 | & - ‘ - .

* Extent ~ 3 Mpc . S .

*Velocity dispersion 6, = o '
600 km/s | .

* Mass ~1x10% Mg S o -

* Distance 15—20 Mpc

Virgo cluster & M87 (lower left)
with foreground objects masked



The Laniakea Supercluster

* We belong to the Local Group, which belongs to the
Virgo Supercluster, which belong to the (even bigger)
Laniakea Supercluster

e Laniakea: "immeasurable heaven” in Hawaiian

* 100 000 galaxies and 300-500 groups and clusters over 160 Mpc
—total mass ~10%7 Mg

naturevideo

https://www.youtube.com/watch?v=rENyyRwxpHo



https://www.youtube.com/watch?v=rENyyRwxpHo

Compact groups

* Typically 4—7 galaxies
inside few ~100 kpc

*Very often spirals

*Short predicted lifetimes
(due to expected
merging)

*=1/3 discordant redshifts

* Can injection of high-
velocity members into

these groups prevent
mergers?
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Gas in groups and clusters

Most baryonic material -~ %
in groups and clusters e
is not stars, buthotgas *  ~«

X-ray gas, T=107—10% K



Why does the gas glow?

Free-free radiation or Brehmsstrahlung
(radiation from electrons accelerated by
charged particles)




* Galaxy motions
Consider a “gas of galaxies”:
* High cluster mass — High galaxy velocities
* kT~mv2 — High galaxy velocities imply high T
*Winds from supernova explosions inject
additional kinetic energy into the gas



*Balance between kinetic and potential energy

Gravitational

<V2>Rgrav radius
G

The virial
theorem: JV/IES

*Hence, high cluster mass — highv — highT
— High X-ray luminosity



Where does the gas come from?

* Mixture of: aim gt e S
e Gas never capturedby ' #. BN e -
galaxies (primordial S TR B T
chemical abundances) = _ o g, o ol o
* Gas (metal-enriched) . ;‘ X ’ R
ejected from galaxies -~ SRR
by stellar winds and RO M WS ;
supernova explosions e e B ®
* Gas metallicity: e "‘ L B e
Z~10% Solar el TR ; ‘

Gas in the Coma cluster



X-ray spectrum — T(r) Depends on the
*X-ray luminosity — p(r) radiation process

L=nn A(T)

Number densities

* Mass:

M (<r) = e 9 oM

JZN Gp(r) dr



Slightly
CMBR e \\\ blueshifted

/e € CMBR
Observer

——

Galaxy cluster
with ionized gas

* Compton scattering of CMBR by free electrons in the
intercluster medium increases the energy of CMBR
photons



Color: Sunyaev-Zeldovich Effect at 28.5 G ) 8-7 group, BIMA Interferometer)

* Measure S-Z — thickness of Ol X B
cluster

* Assume thickness=diameter
— Linear size of cluster in sky

* Measure angular size of
clusterin sky

* Combine angular and linear
size — Distance

T S
RA (J2000)

The S-Z effect is an important tool for cosmology!



* Lensing — basic stuff:
What? Why? Where?

* What do you need it for?

Want to probe the source, the lens, or the Universe?




Overdensities of matter
along line of sight —

e Magnification
 Distorted morphology .

e Shift in apparent
position

e Multiple images

e Delays in time signals



Lensing — quick overview |l

Magnification

Surface brightness
conserved

(as long as the whole
source experiences the
same magnification)

Intrinsic source size  Apparent source size
(boosted due to lensing)

Increased size + conserved surface brighness —
increased apparent flux



Distorted morphology

Q Intrinsic source morphology/orientation/parity

Apparent source morphology/orientation/parity

Stretched, curved and mirror-flipped!






Multiple images

—— Actual Quasar Light
— Image Light o "'"'\
-

Image of
Quasar

B

Quasar

Massive Galaxy ""0\

lon-axis) Image of

Quasar




Delays in time signals

Longer path length & Shapiro time delay
(clocks running slow in strong gravitational fields) - outburst delayed

A

Observer




* Magnification — Can detect sources too
faint to be seen otherwise

* Multiple images, distortions time delays
— Probes of structure and dust reddening
along line(s) of sight

* Testing gravity & cosmology



A couple of examples:

* The flux you measure doesn’t directly reflect the
Intrinsic luminosity
e Can standard candles (e.g. type la supernovae) always
be trusted?

* Cosmic Microwave Background Radiation
(CMBR) maps distorted

Intrinsic CMBR Lensed CMBR




Different types of lensing I:
Strong lensing

~. * ¥ .’ ‘_" . .

A. Bolton (UH IfA) for SLACS and NASA/ESA

Strong lensing: Multiple images, large
distortions, high magnifications
Very rare!



Strong lensing

Weak lensing

Strong lensing

I Weak lensing

True Baskground i Weak lensing: Mild
distortions, small
magnifications
Very common!






Weak lensing distorts the ellipticities of sources
at the ~1% level - very difficult to measure!

Galaxies: Intrinsic galaxy shapes to measured image:

Intrinsic galaxy Gravitaional lensing Atmosphere and telescope Detectors measure Image also
(shape unknown) causes a shear (g) cause a convolution a pixelated image contains noise




Different types of lensing lll: Microlensing

Light —Brown dwarl e Mlcrolen5|ng is a special,
time-dependent case of

Starge_ ’ * strong lensing. There’s also
| nanolensing, attolensing,
femtolensing...
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Gravitational
lensing
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Starse: — ’ /,*.
M The angle between images is
Lﬂﬂﬁfd at the microarcsecond level if
the lens has the mass of a star

or planet
Stars

_ _ Unresolvable with current
s telescopes — Observer sees
just one image!
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*Glass lenses are chromatic

eGraviational lenses are achromatic

e But note: GL may still alter the colour profiles of
extended sources experiencing non-uniform
magnification
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Unlensed source Lens magnifies Total colour
red area becomes redder



Observer

Multiply-imaged

- Quasar

Lens galaxy (with dark halo)
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Measured Depends on lens model

Angular size distances -
Depend on cosmology (mostly H,)

Projected 3D gravitational potential
graV|ta.t|onaI (depends on density
potential profile of lens)




Lens galaxy with dark halo

Colour differences between images —
Extinction law measurement at high z



Intrinsic
quasar
variability

Quasar

Lens galaxy
ﬂ\ Microlensing peak
superposed
on intrinsic variability







Magnification
U ~ 10-100




Strong lensing in clusters I




Gilant arc

’ wr
Giant arcs can be B oy " e
used to assesss: b e > Sy
* Enclosed mass -+ T
e Cluster shape e g -

* Density profile SR . v Ry
(through & i T8 . Wy
arc curvature vs. 6 SRR bt o s S K

arc)
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Dark matter mapping —3D

Dark matter tomography in the COSMOS survey
based on weak lensing
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