Physics of Galaxies, 2015 10 credits Lecture 8: The High-Redshift Universe

Outline: Part I

- The first stars and galaxies
 - End of the dark ages
 - Pop III stars
 - Dark stars
 - First galaxies

Outline: Part II

- Finding high-redshift objects
 - Deep fields
 - Gravitational lensing
 - Dropout techniques
 - Lyα searches
- Future prospects

The end of the dark ages Aschemato Outree of the Cosmic History The Byse grant The Dark ages First stars $z \approx 20\text{-}30$ The Dark ages The Dark ages The Commission and Outree and Outree of the Cosmic History The Dark ages and Outree and Outree

Merging cold dark matter halos 2=11.9 800 x 600 physical kpc

Formation of a ~10^12 M_{solar} dark matter halo Simulation runs from z \approx 12 to 0 (t_{Univ} \approx 0.25 to 13.7 Gyr)

Population I, II and III

- Population I: Metal-rich stars
 Example: Stars in the Milky Way disk
- Population II: Metal-poor stars Example: Stars in the Stellar halo of the Milky Way
- Population III: (Almost) Metal-free stars Example: Stars forming in minihalos at z≈20

Population III stars

- These stars will be *very* massive, hot and short-lived.
- Mass range 10¹-10³ Msolar (but predictions still shaky)
- The first ones are expected in minihalos prior to the formation of the first galaxies.
- Feedback → Only a few stars (maybe just one) per minihalo

Normal star ≈ hydrogen bomb

Dark matter Photon Dark matter Photon Annihilation Electron Dark matter Neutrino

Dark star properties

- Conventional Pop III stars
 - − Teff ~ 50 000-100 000 K
 - M ~ 10¹-10³ Msolar
 - Lifetime $\tau \sim 10^6\text{-}10^7\,yr$
- Pop III dark stars
 - Teff ≈ 4000-50000 K Cooler!
 - M ~ 10^2 - 10^7 Msolar More massive??? - Lifetime $\tau \sim 10^6$ - 10^{10} yr More long-lived???
 - and the same of th

Problem: Still no consensus on likely masses or life times of dark stars

What caused reionization?

- Population III stars in minihalos?
- *High-redshift galaxies?* ← Popular scenario
- Accreting black holes?
- Decay of exotic particles?

How to find and study highredshift galaxies

Imaging strategies

- Deep field-style observations
 - Very long exposures of single patch (devoid of bright foreground objects) in the sky
- Cluster-lensing observations
 - Hunt for gravitationally lensed background objects in relatively short exposures (few hours per filter) of a lowz galaxy cluster

Selecting high-z galaxy candidates Two techniques: • Dropout selection • Crude redshift estimator (Δz≈1.0) • But works well for all high-z, star-forming galaxies • Lyman-alpha surveys • High-precision redshift estimation (Δz≈0.1)

• But doesn't work well at z>6

• And not all galaxies are Ly α -emitters

Problem I: Lyman-α notoriously difficult to predict • Lyα resonant line → random walk through neutral interstellar medium • Many Lyα photons destroyed by dust before emerging • Lyα flux ranges from low to very high

Photometric redshifts • Estimate the galaxy type (morphological) and assume that the galaxy is identical to some template (often an average over many galaxy spectra of similar type) Measured photometrical data points Redshifted z=o template spectrum template spectrum (good match) (bad match) Flux Wavelength Wavelength

New telescope for high-z studies: ALMA Atacama Large Millimeter/ submillimeter Array (ALMA): An array of seventy 12-m antennas operating @ 200-10000 µm (sub-mm) Can be used to search for dust emission and emission lines like [CII] @ 158 µm and [OIII] @88 µm (rest-frame) from z>6 galaxies

Future prospects: E-ELT

39 m European Extremely Large Telescope (E-ELT) estimated to be completed in early 2020s.