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Lecture 8: The High-Redshift Universe
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* The first stars and galaxies
* End of the dark ages

* Pop lll stars

 Dark stars

* First galaxies




 Finding high-redshift objects
* Deep fields
* Gravitational lensing
* Dropout techniques
* Lya searches

* Future prospects



The end of the dark ages

A Schematic Outline of the Cosmic History
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Diemand, Kuhlen, Madau 2006




Minihalos

First stars
(in minihalos)
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e Population |I: Metal-rich stars
Example: Stars in the Milky Way disk

e Population Il: Metal-poor stars
Example: Stars in the Stellar halo of the Milky Way

e Population lll: (Almost) Metal-free stars
Example: Stars forming in minihalos at z=20



Star formation in dark matter halos

Dark matter halo ~ The gas cools by
with gas inside radiating photons Star formation

and contracts

Problem: Low metallicity at high redshifts —
Lack of efficient coolants



* These stars will be
; and

* Mass range 10*-103 Msolar
(but predictions still shaky)

e The first ones are expected in
minihalos — prior to the
formation of the
first galaxies.

e Feedback — Only a few stars
(maybe just one) per minihalo




Normal star = hydrogen bomb




Dark matter annihilation
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Star fueled by WIMP
annihilation rather
than hydrogen fusion

WIMP annihilation in Gas cools and
centre of CDM halo falls into the centre




e Conventional Pop Il stars

— Teff ~ 50 000-100 000 K ) . \

— M ~ 10%*-103 Msolar ‘
_ . . . 6_ -
Lifetime T ~ 10°-107 yr AW ' r
e Pop lll dark stars Ny
— Teff = 4000-50000 K Cooler!

— M ~ 102-107 Msolar More massive???

— Lifetime T ~10%-10%° yr More long-lived???

Problem: Still no consensus on likely masses or life times
of dark stars



The sizes of primordial stars |
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The sizes of primordial stars |l

Supermassive dark star



Formation of the first galaxies

Formation of a
~ 10/ Ivlsolar
dark matter halo

Simulation runs
fromz~40to1a
(tyniv= 65 to 430 Myr)




Star formation
in minihalos

Minihalo mergers
and further
star formation

Object qualifies
as a galaxy

Z~ 23
tuniv & 145 Myr

Z~18
tUniv 5 215 Myr

Z~11
tUniv o 430 Myr

Gas density shapshots




A galaxy is born (at z = 10)




_Time since the
Big Bang (years)

~ 300 thousand

~ 500 million

~ 1 billion
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~ 13 billion

Reionization

A Schematic Outline of the Cosmic History
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«+The Big Bang
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with ionized gas

<-The Universe becomes A
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The Dark Ages start
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The Reionization starts

The Cosmic Renaissanc

The Dark Ages end

<-Reionization complete, A
the Universe becomes
transparent again
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The Solar System forms
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figure it all out! V
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» Population Il stars in minihalos?

o High-redshift galaxies? «<—— Popular scenario
» Accreting black holes?

» Decay of exotic particles?



Imaging strategies

e Deep field-style observations
* Very long exposures of single patch (devoid of bright
foreground objects) in the sky
e Cluster-lensing observations

* Hunt for gravitationally lensed background objects in
relatively short exposures (few hours per filter) of a low-
z galaxy cluster
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Hubble Ultra Deep Field
Hubble Space Telescope * Advanced Camera for Surveys

NASA, ESA, S. Beckwith (STScl) and the HUDF Team STScl-PRC04-07a




Example of one of the most
distant galaxy candidates so far

2.4 arcsec X 2.4 arcsec
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Bouwens et al. (2010)
Z = 10 candidate
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Pros and Cons of Cluster Lensing

-~ \ / Magnification
4 4 H:j_o
<« A {
Observer & A
- s

Galaxy cluster

+ Background sources appear brighter by a factor u

- The volume probed becomes smaller by a factor u

Bottom line: Lensed survey fields can be superior for sources
that are very faint, not too rare and not too highly clustered




Two techniques:

* Dropout selection

* Crude redshift estimator (Az=1.0)
* But works well for all high-z, star-forming galaxies

* Lyman-alpha surveys
* High-precision redshift estimation (Az=0.1)
e But doesn’t work well at z>6
* And not all galaxies are Lyo-emitters




mission No emission
lines lines

Young galaxy Old galaxy



Absorbed by the neutral
interstellar medium
within the galaxy

Lyman break
- (912A)

) / Lyman-o -

Hoc\




Z=0 Z>2.5
B-V ~ normal
\ - v U: extremely faint

A/I_yman break
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At even higher z,
neutral gas in
the IGM start

to absorb

everything

shortward of Lya
(rest A=1216 A)




Eventually, the break shifts into the near-
IR. Example: z-band dropout (z=6.5)




Intermission:
Which of these drop-out candidates is
likely to have the highest redshift?




* Potentially the brightest line in rest frame UV/optical

* Two narrowband images (covering continuum and
line) required for survey of redshift range (Az~0.1)

1 Odd

1 043

—

Sharp drop ~
(absorption [

o
P
Q 41

in neutral <40
IGM)

Lyman-a at z=7



Problem |: Lyman-oa notoriously
difficult to predict

 Lya resonant line —
random walk through
neutral interstellar
medium

* Many Lya photons
destroyed by dust before
emerging

* Lya flux ranges from low
to very high




Abruptdrop —»
Lya not good
way to find z>6
galaxies

(but may be good
way to probe

4 5 6 IIIIIIIIIIIIIII 2 re I O n I Za t I O n )

redshift

Fraction of Hayes et al. 11
Lya photons

reaching the
observer



* Estimate the galaxy type (morphological) and assume that the
galaxy is identical to some template (often an average over
many galaxy spectra of similar type)

T Measured
Flux photometrical
data points
Wavelength
Z=0 Redshifted
template spectrum template spectrum
A (bad match) A (good match)
Flux Flux | .- =

Wavelength Wavelength



New telescope for high-z studies:
ALMA

Atacama Large Millimeter/
submillimeter Array (ALMA):
An array of seventy 12-m
antennas operating @
200-10000 pum (sub-mm)

Can be used to search for dust
emission and emission lines

like [CII] @ 258 um and [Olll]] @88 um
(rest-frame) from z>6 galaxies




MB2 spectrum — 4 x 107 L,

Flux density {Jy)

e 3 45867 8B 910

|ll||:l 1 1 l|_|I 1 | P
10°

2
10
Observed Wavelength {um)

ALMA receivers

Dust continuum flux drops slowly with z (if no source
evolution).




Future prospects: JWST

James Webb Space Telescope
‘The first light machine’

To be launched by

NASA /ESA /CSAin 2018

6.5 M mirror

Observations @ 0.6-29 um
Useful for:

Galaxies up to z = 15

Pop lll supernovae
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Future prospects: E-ELT

39 m European Extremely Large Telescope (E-ELT)
estimated to be completed in early 2020s.
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