
Physics of Galaxies 2016

Exercises with solutions – batch I

1. Distance and brightness at low redshift
You discover an interesting galaxy in the local Universe and measure its redshift to be z ≈ 0.053
and its apparent V -band magnitude to be mV ≈ 25.2. Use this information to estimate its V -band
luminosity. In what way would your estimate change if you found out that this object is part of
a galaxy group with a peculiar velocity component of 4000 km s−1 directed towards us?

Solution:
To convert the apparent brightness (flux) into a measure of absolute brightness (luminosity), you
need to estimate the distance. This holds true at both low and high redshift (local and distant
Universe), but the difficulties you face in the two cases are quite different. At high redshifts, the
conversion depends on the cosmological model (beyond just knowing the local expansion rate of
the Universe, as described by the Hubble parameter H0), whereas at low redshifts (z < 0.1, let’s
say), you can simply apply Hubble’s law. However, the redshift of a nearby object may not be
solely due to the expansion of the Univere, since peculiar velocities (movements with respect to the
so-called Hubble flow) may easily reach a few times 1000 km s−1 and have non-negligible effects on
the measured redshift. At higher redshifts, the relative impact of these peculiar velocities become
so small that they can (in most cases) be safely ignored.

Estimating the distance:

Hubble’s law (eqs. 1.2 to 1.6 in Schneider’s book):

v = H0D, (1)

where v is the so-called recession velocity and D is the distance. At low redshifts, the recession
velocity is related to the redshift through:

v = cz, (2)

where c represents the speed of light. To convert redshift into a distance estimate using Hubble’s
law, you simply insert eq.(2) into eq.(1) and rearrange:

D =
cz

H0
. (3)

In the case where part of the redshift comes from a peculiar motion you need to split the recession
velocity in eq.(2) into two components vpeculiar and vHubble:

vpeculiar + vHubble = cz. (4)

Please note that when the peculiar velocity is directed towards you (thereby effectively causing a
blueshift), it is considered negative in this notation, whereas is a peculiar velocity directed away
from you (causing a redshift) is considered positive. To make sure that the velocity you use when
applying Hubble’s law to get the distance only reflects the explansion of the Universe (and not
the peculiar motion of the galaxy), you should rearrange eq.(4) so that vHubble = cz−vpeculiar and
insert this into eq.(1). After rearranging once more, you get:

D =
cz − vpeculiar

H0
. (5)
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Estimating the luminosity:
The luminosity in the V -band (rest-frame wavelength range ≈ 4800–6500 Å) can be expressed
either as an absolute V -band magnitude MV , or as a luminosity LV in absolute terms (either in
units of L⊙,V or in erg s−1, J s−1 or W).

To get the absolute V -band magnitude, you simply apply:

MV = mV − 5 log10 Dpc + 5−AV , (6)

where Dpc is the distance to the galaxy in parsecs and AV is the V -band dust attenuation along
the line of sight. To go from MV to LV , you can apply eq. A.34 from Schneider’s book:

LV = 10
MV −MV,⊙

−2.5 LV,⊙, (7)

where MV,⊙ is the absolute magnitude of the Sun in the V -band and LV,⊙ is the V -band lumi-
nosity of the Sun. The solar values are often taken to be MV,⊙ ≈ 4.84 and LV,⊙ ≈ 4×1032 erg s−1.

Plugging in the numbers:
Case A: Redshift assumed to be solely due to the expansion of the Universe.
z ≈ 0.053, c = 3× 105 km s−1, H0 ≈ 70 km s−1 Mpc−1 in eq.(2) ⇒

D =
cz

H0
=

3× 105 × 0.053

70

[km s−1]

[km s−1Mpc−1]
≈ 227 Mpc. (8)

mV ≈ 25.2, AV ≈ 0 (dust neglected) and Dpc ≈ 227× 106 pc in eq.(6) ⇒

MV = mV − 5 log10 Dpc + 5 +AV = 25.2− 5 log10(227× 106) + 5− 0 ≈ −11.58. (9)

MV ≈ −11.6, MV,⊙ ≈ 4.84 in eq.(15) ⇒

LV = 10
MV −MV,⊙

−2.5 LV,⊙ = 10
−11.58−4.84

−2.5 LV,⊙ ≈ 3.7× 106 LV,⊙ ≈ 1.48× 1039 erg s−1. (10)

Case B: Redshift partly due to peculiar velocity, and partly the expansion of the Universe.
z ≈ 0.053, vpeculiar = −4000 km s−1, c = 3× 105 km s−1, H0 ≈ 70 km s−1 Mpc−1 in eq.(5) ⇒

D =
cz − vpeculiar

H0
=

3× 105 × 0.053− (−4000)

70

[km s−1]

[km s−1Mpc−1]
≈ 284 Mpc. (11)

mV ≈ 25.2, AV ≈ 0 (dust neglected) and Dpc ≈ 284× 106 pc in eq.(6) ⇒

MV = mV − 5 log10 Dpc + 5 +AV = 25.2− 5 log10(284× 106) + 5− 0 ≈ −12.066. (12)

MV ≈ −12.1, MV,⊙ ≈ 4.84 in eq.(15) ⇒

LV = 10
MV −MV,⊙

−2.5 LV,⊙ = 10
−12.066−4.84

−2.5 LV,⊙ ≈ 5.8× 106 LV,⊙ ≈ 2.32× 1039 erg s−1. (13)

Comment: Neither of these estimates take dust attenuation (AV ) into account. The apparent
magnitude (flux) of a galaxy may be dimmed by dust both along the line of sight and within
the galaxy itself. Depending on you are going to use your luminosity estimate for, you may want
to take at least the line-of-sight component into account. Let’s say that this particular galaxy
happens to be seen along a sightline through the Milky Way that is attenuated by 0.3 magntiudes
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in the V -band (there are Milky Way dust maps and online tools that can help you figure this out,
based on the coordinates of your object). How would this then affect the luminosity estimate? As
an example, let’s insert AV = 0.3 mag into eq.(12):

MV = mV − 5 log10 Dpc + 5 +AV = 25.2− 5 log10(284× 106) + 5− 0.3 ≈ −12.37. (14)

and

LV = 10
MV −MV,⊙

−2.5 LV,⊙ = 10
−12.37−4.84

−2.5 LV,⊙ ≈ 7.7× 106 LV,⊙ ≈ 3.06× 1039 erg s−1. (15)

Hence, our V -band luminosity estimate changed by a factor of 10(−0.3/−2.5)
≈ 1.32 when taking

dust effects into account.
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2. Brightness and colours of unresolved stellar systems
Two stars in a close binary system have mB,1 = 18.2 and mB,2 = 19.6, respectively. The first star
has a colour B − V = −0.2 and the second B − V = 0.5. If this system is observed in a telescope
which cannot resolve the two components, what would the integrated mB and (B − V ) colour of
this object be?

Solution: At large distances, it becomes increasingly difficult to study the individual stars of
stellar populations. There are basically two reasons for this:

1. The flux sensitivity of your telescope may be insufficient to allow the detection of a single,
very distant star, whereas the combined light from large numbers of stars at the same distance
may allow them to be detected

2. Limitations in angular resolution of your telescope may blend the light from stars that are
close in the sky to one another, thereby making distant stellar populations appear as single
objects.

Much of contemporary extragalactic astronomy is therefore devoted to the study of the inte-
grated light from large numbers of stars. To illustrate this point, Figure. 1 shows the appearance
of stellar populations at increasing distances, when observed with current telescopes.

Figure 1: Resolved versus unresolved stellar populations. a) A nearby star cluster (the Pleiades,
distance 440 ly) in which individual stars can be resolved; b) a Milky Way globular cluster (47
Tucanae, distance 17,000 ly) where many stars blur into a single orb of light in the centre; c) Two
unresolved super star clusters in the local galaxy NGC 1569 (distance 11 Mly); d) The unresolved
distant galaxy candidate UDFj-39546284 (for a while considered to be the most distant galaxy
known, at redshift z ≈ 11.9, now believed to be a lower-redshift interloper at z ≈ 2–3). Image
credits: (a) NASA, ESA, AURA/Caltech, Palomar Observatory; (b) SALT; (c) ESA, NASA and
P. Anders; (d) NASA, ESA, Garth Illingworth, Rychard Bouwens and the HUDF09 Team.

Let’s consider the simplest case - where two stars lie so close together in the sky that they
cannot be spatially resolved and are therefore seen as a single object in your telescope. What are
the expected properties of that object?

To get the total flux of a stellar system, you bascially just sum up the flux from the constituents
– in this case the two stars. The only problem is that the fluxes are here given as apparent
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magnitudes, and magnitudes are logarithmic quantities that cannot be summed up directly. So,
what do you do?

The first step is to convert the apparent magnitudes mB,1 and mB,2 of the two stars into fluxes,
fB,1 and fB,2:

fB,1 = 10
mB,1

−2.5 (16)

fB,2 = 10
mB,2

−2.5 (17)

Now, sum these up to get the total B-band flux:

fB,tot = fB,1 + fB,2 (18)

Next, convert the total B-band flux back into an apparent magnitude:

mB,tot = −2.5 log10 fB,tot (19)

This represents the total apparent magnitude of the binary star system. If you want a gener-
alized expression, you can combine eqs.(16)–(19) to get the integrated (total) flux:

mB,tot = −2.5 log10
∑

i

10
mB,i

−2.5 (20)

This actually works for any number of stars – you can sum up the individual flux from billions of
stars to get the total flux of an entire galaxy.

To get the total B − V colour of the stellar population, you simply subtract the V -band
magnitude from the B-band one:

(B − V )tot = mB,tot −mV,tot. (21)

In the case of this binary system, you derive the V -band magnitudes of the two stars using:

V1 = B1 − (B − V )1 (22)

and
V2 = B2 − (B − V )2. (23)

To get the total V -band magnitude mV,tot of this system, you just replace the Bs in eqs.(16)–(19)
by V :

mV,tot = −2.5 log10
∑

i

10
mV,i

−2.5 (24)

Plugging in the numbers:
mB,1 = 18.2 and mB,2 = 19.6 in eq.(20) ⇒

mB,tot = −2.5 log10

[

10
18.2
−2.5 + 10

19.6
−2.5

]

≈ 17.9359 (25)

(B − V )1 = −0.2 and (B − V )2 = 0.5 in eq.(22) and eq.(23) ⇒

V1 = 18.2− (−0.2) = 18.4 (26)

V2 = 19.6− 0.5 = 19.1 (27)

Inserting V1 = 18.4 and V2 = 19.1 into eq.(24) ⇒

mV,tot = −2.5 log10

[

10
18.4
−2.5 + 10

19.1
−2.5

]

≈ 17.9420 (28)

The total (B − V )tot colour then becomes (eq.21):

(B − V )tot = mB,tot −mV,tot = 17.9359− 17.9420 ≈ 0.0. (29)

Hence, the brighter of the two stars (mB,1 = 18.2, (B − V )1 = −0.2) has a larger impact on the
total colour than the fainter one (mB,2 = 19.6, (B− V )2 = 0.5), in the sense that the total colour
becomes closer to that of the brighter star than the fainter one.
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3. The stellar initial mass function (IMF)
If a galaxy has a star formation rate of 10 M⊙ yr−1, how many newly formed stars per year does
this correspond to, if we assume a Salpeter IMF throughout the interval 0.1− 120 M⊙?

Solution: The definition of the Salpeter IMF is (eq. 3.36 in Schneider’s book):

Φ = Φ0

∫ Mmax

Mmin

M−2.35dM, (30)

where Φ corresponds to the number of stars formed in the mass interval [Mmin,Mmax], and Φ0

is a normalization constant. The problem in this exercise basically amounts to figuring out the
value of Φ0.

In this case, we know what gas mass is converted into stars every year. The expression for
this star formation rate Ṁ can be derived by multiplying the number of stars produced in a given
interval by their individual masses (page 133 in Schneider’s book):

Ṁ = Φ0

∫ Mmax

Mmin

M ×M−2.35dM = Φ0

∫ Mmax

Mmin

M−1.35dM. (31)

Rewriting eq.(31), we can solve for Φ0:

Φ0 =
Ṁ

∫Mmax

Mmin

M−1.35dM
. (32)

Eq.(32) may then be substituted into eq.(31) ⇒

Φ =
Ṁ

∫Mmax

Mmin

M−2.35dM
∫Mmax

Mmin

M−1.35dM
(33)

Plugging in the numbers:
If we adopt Mmin = 0.1 M⊙ and Mmax = 120 M⊙, and use star formation rate Ṁ = 10 M⊙ yr−1

in eq.(33) ⇒

Φ =
10 M⊙yr

−1
∫ 120 M⊙

0.1 M⊙
M−2.35dM

∫ 120 M⊙

0.1 M⊙
M−1.35dM

(34)

Let’s solve the integrals ⇒

Φ =
−0.35× 10 M⊙yr

−1
[

120−1.35
− 0.1−1.35

]

−1.35× [120−0.35
− 0.1−0.35]

≈ 28 stars yr−1 (35)
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4. Rotation curves
An spiral galaxy displays the inclination-corrected rotation curve shown in Figure 2. Use this
rotation curve to set a lower limit on the mass of this system.
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Figure 2: The inclination-corrected rotation curve of a disk galaxy (rotational velocity as a function
of distance from the centre of the disk).

Solution: Consider a test particle of mass m orbiting an object of much higher mass M . By
measuring the distance r between these bodies, and the velocity v of the test particle, it is possible
to infer the mass M of the central object.

Figure 3: Schematic illustration of a test particle of negligble mass m with velocity v, in circular
orbit around more massive object with mass M . The gravitational force Fgrav is here equal to the
centrifugal (pseudo-)force Fcentrifugal.

How does this work? Well, if the gravitational and centrifugal forces are to cancel each other, we
have

GmM

r2
=

mv2

r
, (36)

where G is the gravitational constant. If we rearrange, we find that m cancels out, and we get:

M =
v2r

G
(37)
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Hence, by measuring v and r, we can infer M . If we generalize the simple situation of a particle of
negligible mass m orbiting a more massive object M into a tracer particle moving in a spherical
dark matter halo, the mass M in eq.(37) is usually interpreted as the mass M(< r), i.e. the mass
enclosed with the radius r. By measuring the rotational velocity of some tracer particles (stars, or
gas clouds) at different distances from the centre, we can derive the mass of the galaxy enclosed
within that radius. Now, detectable tracer particles tend to be concentrated towards the inner
region of the dark matter halo (where the luminous galaxy is sitting), so observed rotation curves
never extend to the outer limit of the dark halo. For this reason, the mass you derive using eq.(37)
will in practice be a lower limit to the total mass – if you could measure velocities even further out,
the mass estimate would likely increase somewhat. If you want to impose the strongest possible
limit on the mass of the galaxy which displays a rotation curve that stays flat out to the outermost
measured data point, it’s a good idea to use that outermost datapoint for your calculations.
Plugging in the numbers:
Let’s pick the outermost datapoint (R = 35 kpc, v = 230 km s−1) from the rotation curve in
Fig. 2 and apply eq.(37) – the main problem here is to keep track of the units. A parsec (pc) is
about 3.0857 × 1016 m, the gravitational constant G is 6.67384 × 10−11 m3 kg−1 s−2in SI units,
and the mass of the Sun is 1.989× 1030 kg.

M =
(230× 103)2 × 35× 103 × 3.0857× 1016

6.67384× 10−11
≈ 8.56× 1041 kg (38)

Converting this into Solar masses yields 4.3× 1011 M⊙.
Comment: There are quite a few assumptions going into this derivation. To begin with, the
mass of the galaxy is assumed to be centrally concentrated (similar to how the Sun makes up most
of the mass of the the Solar System), but this is simply not so. The modern view of a disk galaxy
includes a disk of stars and gas, a stellar bulge, a stellar halo, a dark matter halo and potentially
a gaseous, highly ionized halo component. Because of the different geometrical shapes of these
components, relating rotational velocity to mass is in general highly non-trivial. However, in the
simplifying case where a spherical dark matter halo is assumed to dominate the mass budget at all
radii, the simple Newtonian analysis presented here (and in Schneider’s book) is usually considered
adequate.

8



5. The Tully-Fisher relation. An edge-on disk galaxy is observed to have the HI line profile
depicted in Fig. 4 and an H-band flux of mH = 15.1. Use the Tully-Fisher relation to estimate the
distance to this object.
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Figure 4: The global HI profile of an edge-on disk galaxy. While a light spectrum usually features
wavelength or frequency on the x-axis, this quantity has here for been converted into a velocity
to illustrate the redshifts/blueshifts that HI clouds at different positions along the rotating disk
exhibit compared around the so-called systemic velocity (which is produced by the expansion of
the Universe and the peculiar motion of the galaxy relative to the Hubble flow).

Solution: The HI line profile of disk galaxies contains information about the velocity distribution
of gas clouds within these systems. The line profile encodes information somewhat similiar to that
in a rotation curve (e.g. Fig. 2), but doesn’t require the galaxy to be spatially resolved and can
therefore be observed for more distant systems. Basically, the HI profile tells you what the typical
velocity of the HI reservoir in the galaxy is. Since most of the HI is in the outskirts, where the
rotational velocity has plateaued, the line width can be used to estimate the maximal velocity of
the rotation curve. As discussed in exercise 4, this is related to the overall mass of the system.

Empirically, the HI line width is tightly coupled to the absolute magnitude. This is illustrated
for observations in various filters in Fig. 3.27 in Schneider’s book. So, if you know the HI line
width W , you can predict the absolute magnitude M . If you couple this to a measurent of the
apparent magnitude m, you can derive the distance to the galaxy using the standard relation

M = m− 5 log10 Dpc + 5−A, (39)

where Dpc is the distance in parsec and A is the dust attenuation along the line of sight.
To convert the measured HI line width W into an absolute magnitude in the H-band, you may

either read off MH directly from Fig. 3.27 in Schneider’s book, or use the empirical relation on
which that plot has been based (Pierce & Tully 1992, ApJ, 387, 7):

MH ≈ −9.50(log10 W − 2.50)− 21.67, (40)

where W is in units of km s−1.
Since we are dealing with flux measurements in the infrared, where the effects of dust attenu-

ation are typically very small, we neglect the attenuation correction A in eq.(39) and solve for the
distance:

Dpc = 10
MH−mH−5

−5 . (41)

Plugging in the numbers:
By measuring W ≈ 68 km s−1 from Fig. 4 and inserting this into eq.(42), we get:

MH ≈ −9.50(log10 68− 2.50)− 21.67 ≈ −15.33 (42)
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Inserting MH = −15.33 and mH = 15.1 into eq.(41) ⇒

Dpc = 10
−15.33−15.1−5

−5 ≈ 12.2 Mpc (43)

Erik Zackrisson, April 2016
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