Physics of Galaxies 2016 Lecture 1: Introduction

Outline for today I

- Formal Stuff:
 - Course literature
 - Examination
 - Schedule
- Course outline

Outline for today II

- What is a Galaxy?
- Historical Background
- Galaxy Classification
- The Cosmological Framework

Teacher

- Erik Zackrisson
 - Email: erik.zackrisson@physics.uu.se
 - Room 63103
 In astronomy corridor on floor 3 in house 6
 just ring the bell to get in!

Course homepage

Link:

www.astro.uu.se/~ez/kurs/Galaxies16.html

The Project of Globales, INECS Days Systeg 2 MS

Annuary Project Section 25, 17 Supplies to some part Combings*, Springs 2001 57-54-5.050; doubted) or \$75-540.5000.* (flocks)

Common Contention Contentions of the projects, endouse and explained spring displaces.

Projection Contention complexing to a Month of they provise, or statude, a ballion, how increding show sports, ending a facilities and sensitivy comproding to Examinate Southern Springs. A month of the project Springs and sensitivy comproding to Examinate Southern Springs. A month of the Springs and Sprin

Date	Time	Room	Lecture/ Exercise session/ Seminar	Topics	To read	To turn in prepare
April 12	10-12	A80115	Lecture 1	Course introduction Historical background The extragalactic distance scale Galaxy classification	1-1.4, 3-3.1.2, 3.9-3.9.6	
April 14	13-15	A2003	Lecture 2	The Milky Way The Local Group	2.12.4.2, 6.16.1.3	
April 19	15-17	A80109	Lecture 3	Durk matter in galaxies	2.4.3, 3.3.4, 4.4.6, 7.6	

Course literature

Extragalactic Astronomy and Cosmology

Peter Schneider 2014/2015, Springer Hardback: ISBN 978-3-642-54082-0 eBook: ISBN 978-3-642-54083-7

Around 700 SEK

Intermission: What are you looking at?

Examination

- Two exercise sessions
- Hand-in exercises
- Two seminars
- One computer/laboratory exercise
- Written essay (minimum 3 pages) + oral presentation (10 minutes)

But no written test!

Exercise sessions

• Session 1: April 27, 10-12 • Session 2: May 19, 13-15 • Objective: Solve problems together in class

Exercise sessions

- Preparation:
 - Study exercises and solutions posted on course homepage
 - Bring pen, paper, calculator/computer, textbook
- Grade: Pass/Fail

No-show or not actively participating → Need to complete more hand-in exercises

Exercises and solutions on the course homepage

Make sure you understand the solutions before coming to the exercise session!

The problems we solve in class will be similar.

Hand-in exercises

- 2 exercises downloadable from the course homepage
- Submit by email Deadline: June 14
- •Grade: Fail, 3, 4, 5 Collaboration OK, but please don't turn in identical solutions!

Physics of Galaxie

Note: If you didn't actively participate in the exercise sessions, you need to hand in additional exercises - please contact me if this situation should arise

Intermission: What are you looking at?

Literature exercise

- Choose subject individually
- Find suitable articles
 - Published papers (ADS abstract service) http://adsabs.harvard.edu/abstract_service.html Preprints:
 - http://www.arxiv.org
- Written report (≈ 3 pages), deadline May 26 • Grade: Fail, 3, 4, 5
- •Oral presentation (≈ 10 minutes), May 31 • **Grade**: Fail, 3, 4, 5

Suggested topics

- The first stars
- Origin of supermassive black holes
- Galaxies and cosmic reionization
- Ultrafaint dwarfs
- Extragalactic background radiation
- Galactic archeology
- Magnetic fields in galaxies
- Science cases of future telescopes (pick one!):
 - James Webb Space Telescope
 - European Extremely Large Telescope
 - Square Kilometer Array

Seminars

- •Small "simulations" of what the work of a scientist is really like
- •Two seminars:
 - •1. May 12, 13-16 (Note: 3 hours!)
 - 2. May 24, 13-15 (group 1), 15-17 (group 2)
- •Instructions available from course homepage

Seminars

- •Purpose:
 - Practice finding and reading relevant research papers
 - Practice critical thinking
 - Practice analyzing astronomical data
 - Practice scientific creativity
 - Practice communication skills
- •What if you cannot attend the seminars?
 - · Have to present results in written report $(\rightarrow more work!)$

Seminar I

- •Grade: Pass/fail
- •Role-playing exercise
- Preparation:
 - Study the two scenarios in the instructions
 - Read the additional material available in the student portal

Seminar I						
Gen	eral instructions					
part o	focument provides preparation instructions for the first of the two seminars forming of the examination for the course Physics of Galaxies in 2016. This is a role-playing see that will cast you into Situations that scientists (and especially astronomers) ently encounter, yet in general tend to be rather poorly prepared for.					
	oint of this exercise is to:					
	Practice reading research papers, press releases or other scientific texts in the field of extragalactic astronomy					
	Practice critical thinking					
•	Practice interacting with the public and with journalists in a professional manner,					

Seminar II

•Grade: Fail, 3, 4, 5

- Preparation:
 - Read suggested papers + others
 - Answer questions + analyze dataset
 - Prepare to present answers and results in class

Seminar II: The most distant galaxies

Practice reading technical research papers (as opposed to popular articles, review papers or textbooks). As a professional astronomer most of the stuff you will read is likely to be of

Database exercise ("lab")

- Introduction to exercise in lecture 6
- Complete individually and hand in report no later than June 7
- Grade: Fail, 3, 4, 5

Intermission: What are you looking at?

Schedule I

Complete schedule on course homepage!

- 8 Lectures:
 - April 12, 10—12
 - April 14, 13—15
 - April 19, 15—17
 - April 21, 15-17
 - April 26, 13-15
 - May 3, 10—12 ←
 - May 10, 10—12 • May 17, 10—12
- Includes introduction to database exercise
- 2 Exercise sessions:
- April 27, 10—12
- May 19, 13-15

Schedule II

- 2 seminars:
 - May 12, 13—16
 - May 24, 13-15 (group 1) & 15-17 (group 2)
- Oral presentations of literature exercises
 - May 31, 13—15 + additional date?

Grades

- Final grade will be the mean grade from:
 - Seminar 2
 - Written report on literature exercise
 - Oral presentation of literature exercise
 - Report from database exercise
 - Hand-in exercises
- No final grade will be computed until you have a reached a passing grade (3 or higher) for each of
- Please note that you also need a passing grade from the two exercise sessions and seminar 1 to complete the course

Grades – example

- 1) Seminar 2 Grade: 4
- 2) Written report on literature exercise Grade: 4
- 3) Oral presentation on literature exercise Grade: 3
- 4) Report on computer exercise Grade: 5
- 5) Hand-in exercises Grade: 3

Calculate mean grade: $(4+4+3+5+3)/5 = 3.8 \approx 4$ Final grade: 4:

How much time will I have to spend on this course?

My estimates:

- Attending lectures, exercise sessions, seminars etc. ≈ o.6 week
- Reading the textbook ≈ 1.5 weeks
- Preparing for exercise sessions \approx 0.4 week
- Preparing for seminars ≈ 1 week
- Computer exercise ≈ 1 week
- Literature exercise (written report + oral presentation) ≈ 1.5 weeks
- Hand-in problems \approx 0.5 week

Sum: 6.5 weeks, i.e. \approx 10 hp

Course Outline

- •Lecture 1:
 - Introduction
 - Historical Background
 - Galaxy Classification
 - •The Cosmological Framework

Course Outline

- •Lecture 2:
 - •The Astronomical Distance Scale
 - •The Milky Way
 - •The Local Group

Course Outline

- •Lecture 3:
 - •Dark matter in galaxies
 - •The dark halo
 - Subhalos
 - •Mass-to-light ratios
 - Baryon fractions

Course Outline

- •Lecture 4:
 - Disk galaxies
 - Elliptical galaxies

Course Outline

- •Lecture 5:
 - Star formation
 - Population synthesis
 - Galaxy spectra
 - $\bullet\, \hbox{The interstellar medium}$
 - The cosmic star formation history

Course Outline

- •Lecture 6:
 - •Black holes
 - Active galaxies:
 - Quasars
 - Blazars
 - Seyfert Galaxies
 - Radio Galaxies
 - •Introduction to computer exercise

Course Outline

- •Lecture 7:
 - Galaxy groups
 - Galaxy clusters
 - Gravitational lensing

Course Outline

- •Lecture 8:
 - •The high-redshift Universe
 - Cosmic reionization
 - •The first stars and galaxies

Intermission: What are you looking at?

Historical Background: The Milky Way

Historical Background: The Milky Way

- The "Herschel Universe" (late 1700₅): Sun almost in the centre of Milky way
- Dust obscuration towards centre of the Milky Way (left side of figure) not accounted for

Historical Background: The Milky Way

Kapteyn Model (1922)

- Sun offset from centre
- \bullet Dust obscuration still not accounted for \rightarrow wrong scale

Historical Background: Other Galaxies

- Mid-1800s: William Parsons (Lord Rosse) discovers spiral structure in nebulae
- 1912: Henrietta Leavitt discovers period-luminosity relation for Cepheids
- 1920s The Great Debate
 - Shapley (local objects) VS Curtis (outside Milky Way)
 - Outcome: Spiral Nebulae are external galaxies
- 1929 Expansion of the Universe (Hubble's law)

Historical Background: Active Galaxies

• 1943 - Seyfert Galaxies

Historical Background: Quasars/QSO

- 1960s Radio Galaxies, Quasars
- Quasi-Stellar Object: QSO, Quasar

Galaxy Classification Elliptical galaxies • Type: En, n = 10 (a - b) / a. • Major and minor axes: a and b • → Eo circular, E7 galaxies the most flattened. Examples: Exa

Galaxy Classification

Dwarf galaxies (dE, dSph, dl...) – Low-luminosity objects

Morphological Type?

Morphological Type?

What is the Point of Morphological Classification?

Hubble class correlates with:

- •Gas content
- Dust content
- Star-forming properties
- •Spectrum
- Metallicity

Morphological Complications X-rays UV Optical Same galaxy (M81) at different wavelengths!

Far-IR

Near-IR

Morphological Complications

Figure 1.7 Above, atmospheric transmission in the optical and near-infrared. Below, flux F_{λ} of a model A0 star, with transmission curves $T(\lambda)$ for standard filters from Bessell, PASP 102, 1181; 1990. UX is a version of the U filter that takes account of atmospheric absorption. For JHK'KL', $T(\lambda)$ is for transmission through the atmosphere and subsequently through the filter.

The Cosmological Framework IV

- $\Omega_{\rm i}$ = $\rho_{\rm i}/\rho_{\rm c}$ $\rho_{\rm c}$ = critical density of the Universe
- $\Omega_{\mathrm{Tot}} \approx$ 1.0
- $\Omega_{\rm Baryons} \approx$ 0.04
- $\Omega_{\rm M}$ pprox 0.3
- Ω_{Λ} pprox 0.7