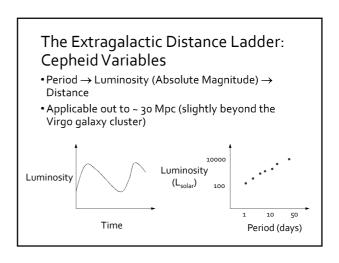

Physics of Galaxies 2016 10 credits Lecture 2: The Milky Way and Local Group

Outline

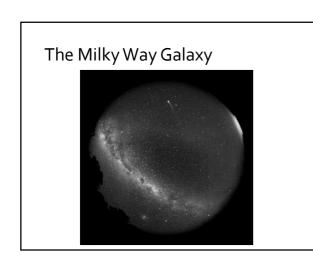
- The Extragalactic Distance Scale
- The Milky Way Galaxy
- The Local Galaxy Group

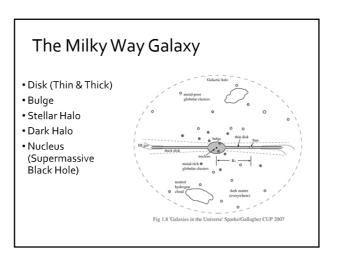


Note: Outdated range estimates...

The Extragalactic Distance Ladder: Trigonometric Parallax • d (pc) = 1 / p (arcsec) • Currently applicable out to ~ 500 pc (closest stars) • Satellites (e.g. Gaia) → Applicable out to 10000 pc Earth (January) Sun Earth (July)

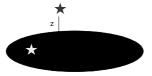
The Extragalactic Distance Ladder: Main-Sequence Fitting • M = m - 5log (d/10 pc) • Star clusters and Galaxies • Applicable for Milky Way and the Magellanic Clouds Luminosity Character (Absolute luminosity) Observed cluster (Apparent luminosity)


The Extragalactic Distance Ladder: Tully-Fisher / Faber-Jackson


- •Tully-Fisher: $L \propto v_{max}^4$ (for disk galaxies)
- •Faber-Jackson: $L \propto \sigma_v^4$ (for elliptical galaxies)
- •Applicable out to ~ 100 Mpc (the Coma galaxy cluster)

The Extragalactic Distance Ladder: SN Type Ia • Applicable at least out to z≈2 (≈ 3000 Mpc) • Formed in binary system in which matter from a red giant falls onto a white dwarf • Absolute -17 magnitude -15 • Days after maximum

The Extragalactic Distance Ladder: Hubble's Law DISCOVERY OF EXPANDING UNIVERSE • $V = H_0 d$ • Note! Not a real velocity! • Peculiar motions irrelevant at high distances • $Z << 1 \rightarrow V/C \approx Z$ • Higher-order terms required at high redshifts



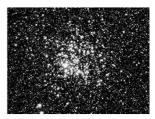
The Milky Way Galaxy

- Spiral galaxy of type Sb/Sbc or SABbc
- Contains about 200-400 billion stars

Galactic coordinates

$$\begin{split} n(R,z,S) &= n(0,0,S) \exp[-R/h_z(s)] \exp[-|z|/h_z(s)] \\ &\quad \text{$h_{\rm R}$: Scale length, h_z: Scale height} \\ &\quad \text{S: Stellar type} \end{split}$$

The Milky Way Galaxy


- •The concept of populations:
 - Three types with increasing age: population I, II & III. Pop III stars are the first to form in the universe.
 - No strict dividing line between the types
 - Less used today, except pop III which is a hot topic in the high-redshift Universe
- Correlation between age and metallicity (amount of heavy elements) → can obtain information both about when and where the stars formed

The Milky Way Stellar Disk I

- Radius of the disk: > 15 kpc
- Scalelength h, of the disk: 2-4 kpc
- Disk luminosity: 15—20 ×109 L_{solar}
- Stellar Disk mass: 6 ×1010 M_{solar}
- Thin disk:
 - Scaleheight h_z : 300—400 pc
 - Contains 95% of all disk stars & all the young ones
 - High metallicity
- Thick disk:
 - Scaleheight: 1000—1500 pc
 - Lower metallicity

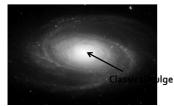
The Milky Way Stellar Disk II

- Stars form in clusters and associations
- Open clusters:
 - Few hundred stars at most
 - Luminosity 100-30000 L_{solar}
 - Core radius ~ few pc
 - Young (Only ~5% more than 1 Gyr old)
 - More bound than associations, but most dissolve over a few hundred Myr

Messier 11 – the Wild Duck Cluster An open cluster in the Milky Way

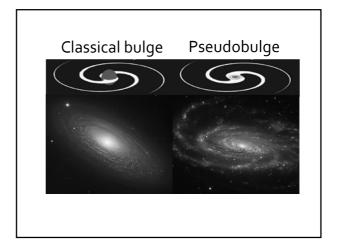
The Milky Way Stellar Disk III

- Associations:
 - Not gravitationally bound
 - Forms temporary systems



An OB association in the Large Magellanic Cloud

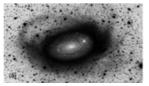
The Milky Way Bulge


- Flattened (a/b \approx 0.6), radius \sim 1 kpc
- Possibly contains bar (2—3 kpc long)
- Rotates in same direction as disk stars, but slower (≈ 100 km/s)
- Contributes 20% of the MW luminosity
- Stars several Gyr old, but younger than in halo
- Average stellar metallicity ≈ 0.5 Z_{solar}

Bulge and pseudobulge – unclear which type the Milky Way has

Classical bulge: Resembling a small elliptical galaxy, formed through mergers

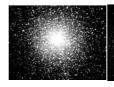
Pseudobulge: Disk-like properties, formed internally (so-called "secular evolution"). No mergers required.



Intermission: bulge or pseudobulge?

The Milky Way Stellar Halo I

- Somewhat flattened, but rounder than bulge
- Radius ≈ 50 kpc
- Stellar density $\propto r^{3.5}$
- Total mass in halo stars: ~ 109 Solar masses
- 1/1000 of all local stars belong to halo
- Eccentric orbits, sometimes retrograde

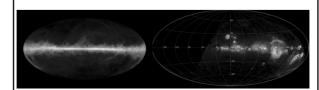

Highly processed image, showing the stellar halo (black) around the galaxy M63

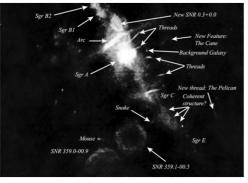
The Milky Way Stellar Halo II

- Globular clusters
 - Up to 1 million stars
 - Total mass ~ 105 Msolar
 - No dark matter (at least not anymore)
 - Core radius < 1 pc
 - Tidal / truncation radius 20-30 pc
 - About 150 objects known, ages 10—14 Gyr (oldest objects in the Galaxy)
 - Typically very metal-poor

Intermission: Which of these is *not* a globular cluster?

The Milky Way Dark Halo

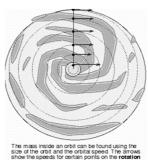

- Radius > 100 kpc
- Contributes ~ 90% of the mass inside 100 kpc
- Content unknown
- Standard assumption: Weakly Interacting Massive Particles (WIMPs)


Dark matter halo from the Aquarius simulation

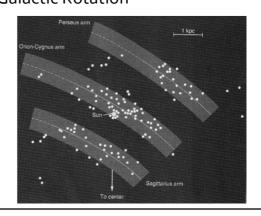
The Milky Way Gaseous Disk

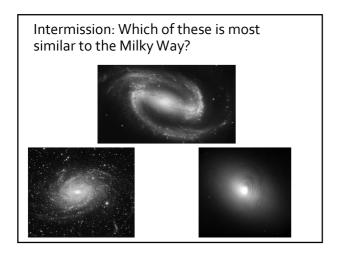
- 4— 8×10^9 solar masses HI
- 2—4 \times 10 9 solar masses H $_2$ (but uncertain)
- Dust ~ 1 % of HI mass

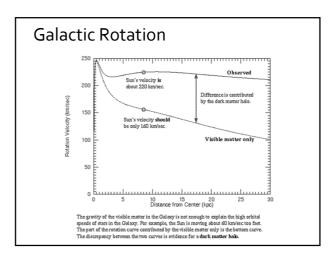
The Milky Way Centre


1 m Radio observations

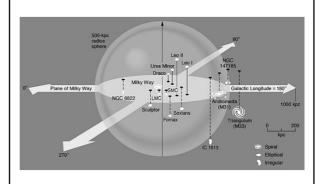
The Milky Way Centre


- Infrared light shows a dense star cluster which peaks at the center, near Sagittarius A*.
- The high velocities of the stars require a mass of ~2 x 106 M_{solar} within 1 pc
- Stars are only 1000 AU apart
- Collisions every ≈ 10⁶ years!
- The centre of the star cluster likely hosts a Supermassive Black Hole (although somewhat lightweight)


Galactic Rotation


- Differential rotation
- Neutral hydrogen: 21 cm
- Distance Sun-centre: 8 kpc
- Sun's Velocity around the centre 220 km/s
- One revolution in 250 Myr

Galactic Rotation

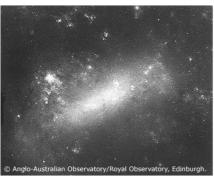


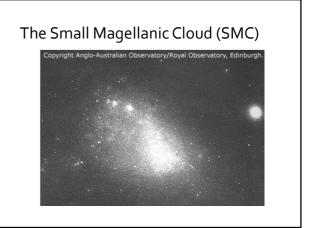
The Local Group

- •The Local Galaxy Group
 - •Local Group "Geography" & Inventory
 - •The Large and Small Magellanic Clouds
 - •The Magellanic Stream
 - ·Satellites of the Milky Way
 - •The Andromeda Galaxy & M33

Local Group "Geography"

The Local Group Inventory

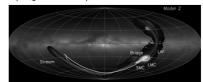

- Radius ~1.2 Mpc
- Held together by gravity (decoupled from the "Hubble flow")
- Three spirals: Milky Way, M31, and M33
- Two more massive galaxies:


 Irregular Large Magellanic Cloud
 Small (dwarf) elliptical galaxy M₃2
- The rest are dwarf galaxies (dl, dE, dSph) with M_V > -18

The Local Group Inventory

- •The Local Group does not contain:
 - Blue compact dwarf galaxies
 - Dwarf spirals
 - Massive ellipticals
 - Active galaxies

The Large Magellanic Cloud (LMC)


The Magellanic Clouds

	LMC	SMC
Diameter	24 deg.	7 deg.
Distance	50 kpc	63 kpc
Total mass	6×10 ⁹ s.m.	2 × 10 ⁹ s.m.
Luminosity	~10% of MW	~1% of MW
HI mass	7×10^8 s.m.	6.5 × 10 ⁸ s.m.
Z	0.70 solar	0.25 solar
M(HI)/M(total)	0.09	0.32

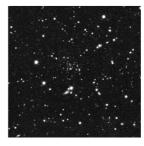
The Magellanic Stream & Bridge

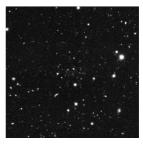
- Magellanic Bridge:
 - HI bridge between LMC and SMC
 Size ≈ 20 kpc

 - Mass: 2×10⁸ solar masses HI
 - Contains stars formed 10—25 Myr ago
 - Could have formed 200 Myr ago when LMC and SMC where the closest
- Magellanic Stream:
 - Gas trailing behind LMC and SMC
 - Wraps 1/3 around the sky

The 11 "Classical" Satellites of the Milky Way

- LMC
- SMC
- Fornax Sagittarius
- Leo I (DDO 74) Sculptor
- Leo II (DDO 93) Sextans
- Carina • Ursa Minor
- Draco (DDO 216)


But dark matter theory suggests a factor of \sim 10 more \rightarrow "The missing satellite problem" Lots of so-called

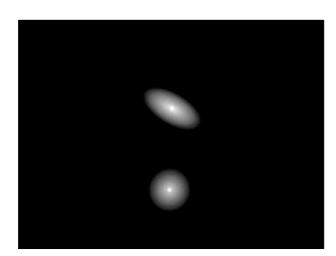

ultrafaint dwarfs detected in the past decade -

still unclear if this is the solution

Ultrafaint dwarf galaxies

- Some of the most dark matter-dominated systems known
- Almost impossible to spot "by eye"

The Andromeda Galaxy & M₃₃



M₃₁ (Andromeda)

M₃₃ (NGC 598)

Andromeda, Milky Way, M₃₃

- The Big Spirals of the Local Group-
- •Luminosity: $1.5 \times MW$, $1 \times MW$, $0.35 \times MW$
- •Andromeda & The Milky Way have warped disks, probably caused by interaction with M₃₂ and Magellanic Clouds
- •Milky Way & Andromeda may collide in ~ 5 Gyrs

