Physics of Galaxies 2016

10 credits
Lecture 4: Disks and ellipticals




* Disk galaxies
* Surface brightness profiles
* Stars and gas
* Rotation curves
* The Tully-Fisher relation
* Spirals and bars




* Elliptical galaxies
* Surface Brightness Profiles
e Stars
* cD-Galaxies
* Triaxiality
 Stellar Motions
* The Faber-Jackson Relation
* Masses
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ELLIPTICAL GALAXIES

E(b)4 E(d)4
Boxy Disky

Kormendy & Bender (1996)
Featured in Schneider’s book
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Elliptical Galaxies




*Sequence:
S0-Sa-Sb-Sc-Sd-Sm
SB0-SBa-SBb-SBc-SBd-SBm
Early-type disks Late-type disks

*Qutside the original Hubble Tuning fork:

*Sd-galaxies: Bulgeless disks

*Sm-galaxies: Magellanic spirals (almost irregular,
prototype LMG,



S0-Sa Sd-Sm
Spiral arms: Absent or Open spiral
tight
Bulges: Big Small
Color (B-V): Red (0.7-0.9) |Blue (0.4-0.8)
Young stars: —ew Many
Hll-regions: —ew, faint Many, bright
Surface brightness: | High Low
Mass: High Low
Rotation: ~ast rising Slow rising




Intermission: Which of these
disks is the most “early-type”:




Size of object

Distance to object

u(r)oc—=2.5log,, 1(r)

* I(r) usually Lg kpc?, but u(r) in mag arcsec™
* Determines observability of extended objects (e.g. galaxies)
* |(x) independent of distance(!) in local universe...

* ... but subject to factor (2+z) 4 of redshift dimming —
One reason why high-redshift objects are extremely difficult
to detect



* Sizes of galaxies often given out to a specified
isophote:
* R,;: Radius at 25 mag arcsec™ in B-band
* Holmberg radius: Radius at 26.5 mag arcsec?in B-band

Mg
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e Radial direction — Sersic formula:

I (R) = 1(0)expl-(R/h)""

hg: Scale length

I(0): Central surface brightness

n=¢4 — de Vaucoleur formula (for bulges & ellipticals)
n=1— Exponential disk (for the disks of disk galaxies)



*Profiles of exponential disks (n=1):

1(R) = 1(0)exp(— R/ h,, ) es

* Alternative formulation (3.14 in Schneider):

(mag arcsec?)

H,: central surface brightness



* Alternative formulation of Sersic formula (3.39
in Schneider)

|(R) =1, expl-Db

(R/R)"" -1

N

R,: effective radius
(radius inside which half of the light is emitted)

l,: Surface brightness at R,
b,: coefficient given by b, = 1.999n-0.327
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Fig 5.24 (A. Kinnay) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007




NGC 4831 NGC 3827
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* Fluxin 212 cm line = HI mass:

M(HD _ 5 356%10° D2 j F dV.
I\/Isolar
Integration
Distance over line profile

In Mpc



*H, most abundant molecule, but
difficult to observe in emission

*2.6 mm line of CO can be used as
tracer:
*M(H, )/F(Co)=X
*However: the conversion factor X

depends on metallicity; very uncertain in
metal-poor galaxies



In disks:

Average
rotational
velocity

Typical
velocity
dispersion




Typical Typical
high surface low surface
brightness galaxy brightness galaxy

rot rot

Radius Radius
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Recall from lecture 3:

M (< R) — VI‘O’[((E)ZR
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Fig 5.20 (Begeman, Sofue) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Typical global M/L~10-100
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Don’t need rotation curve — you can also use HI
spectral line profile

Wline
( A \ ~ WIine
4 Vmax
Vsys l :
In one of the exercises, we use
é l the following form of the TF relation:
L | |
Mpy ~ —9.50(log,, W — 2.50) — 21.67,
>

Heliocentric velocity



Absolute optical magnitude

Line width

Zackrisson, E., Calissendorff, P., Asadi, S.,
Nyholm, A. 2015, Astrophysical Journal, 810, 23



Spiral Galaxy NGC 2997 (VLT UT1 + FORS1)
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Spiral Galaxy NGC 4414

P,

PRC99-25 - Hubble Space Telescope WFPC2 - Hubble Heritage Team{AURA/STScIINASA)




Intermission:
What type of spiral is this?




30 million years 100 million years

Lyfterential rotation, stars near the center take less time to orbit the center than those farther
from the center. Differential rotation can create a spiral pattem in the disk in a short time.




Prediction: 500 million vears Observation: 15,000 million years




Stars on elliptical orbits with different orientations —
stars in piral arms continuously replaced
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individual cars move through the traffic jam

incoming clouds

. - and stars
density wave N

] S COnNESSIont
onlky the long-lived :
stars make it out. stars form d'ensﬂw,aw

(enhanced gravity)

S piral density waves are like traffic jam s, Clouds and stars speed
up to the density wave (are accelerated toward it) and are tugged
backward as they leave, so they accumulate in the density wave
(like cars bunching up behind a slower-moving vehicle). Clouds
compress and form stars in the density wawve, but only the fainter
stars live long enough to make it out of the wave.




*From where does the density wave get its
energy?

* From the rotation of the disk?

* From a companion galaxy?

* Internal forces from a central bar?

*Spiral patterns remain mysterious...




* At least 50% of all disk galaxies have bars
*Bars are not density waves!
'Elongated orbits Face-on disk

with bar
Bar with

elongated orbits







Intermission:
The Galaxy Zoo Project

https://www.galaxyzoo.org/



https://www.galaxyzoo.org/

Elliptical Galaxies

AAT 60




R4 or De Vaucoleurs law (n~4)




A Cusp 4 Core
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The core is due to influence from the central
supermassive black hole. The radius of the core correlates strongly
with the black hole mass (Thomas et al. 2016, Nature)!
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Fig 6.17 (A. Kinney) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007
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‘E+A’-systems: Ellipticals with spectral signatures of
recent star formation

single burst of
star formation
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*The most luminous,
non-active galaxies

“Cannibal-galaxies”,
found only in centres
of galaxy groups and
clusters

*Brighter than

R¥4-law prediction
at large radii

AAT 60



Triaxiality

‘XZY £/
*|[sophote twisting: a tell-tale sign of

triaxiality



*Flattening of ellipticals not always due to
rotation, but rather velocity anisotropy
(o0,#0,)

Ymax 0,011

O,




L oc 0,4 e.g.

4
L o
2x10"”L,. ., \ 200 km/s

which is a projection of the “fundamental
plane” of elliptical galaxies:

1.4 —0.85
R, o oy (1)

€

where R, is the effective radius, o, is the central
velocity dispersion and <I>, is the average
surface brightness within R,



* More difficult than for disk galaxies

* A few methods:
* For gas-rich Es: Hl rotation curves
* X-ray gas: M=t(p ., ", T)
*Virial theorem: M=f(c,r) with
* Stellar o(r) from absorption lines

* Stellar o(r) and v, from planetary nebula
emission lines

rot
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