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Exercises with solutions – Batch II

1. Surface brightness
Derive an approximate expression for the total luminosity of a disk galaxy with a exponentially
declining surface brightness distribution given by I(r) = I0 exp(− r

a ), where a represents the scale
length.

Solution: Surface brightness is usually expressed as I (units L⊙ pc−2) or µ (units mag arcsec−2).
As counter-intuitive as this may seem, surface brightness is actually independent of distance at
low redshift (although demonstrating this requires a somewhat cumbersome calculation). Beyond
the local Universe (at z > 0.05 or so), however, an effect known as redshift dimming sets in and
dilutes surface brightness by a factor (1 + z)−4.

For the problem at hand, consider the face-on disk depicted in Figure 1, for which the surface
brigtness at radius r is given by:

I(r) = I0 exp(−
r

a
), (1)

where I0 is the central surface brightness (i.e. at r = 0) and a is the disk scale length.
In the case of a disk with constant surface brightness (I(r) = I0), you would simply multiply

I0 (in L⊙ pc−2) by the total area of the disk πr2max (in pc2) to get the luminosity L (in L⊙).
However, since the surface brightness changes across the disk, you have integrate over r:

L =

∫ rmax

0

2πrI(r) dr. (2)

Here, 2πr is simply the circumference of a circle with radius r.
To understand why eq.(2) makes sense, you can think of the disk as divided into a number

of annuli, each with thickness dr (as illustrated in Figure 1). The area of each such annulus is
approximately 2πr multiplied by dr, and the luminosity of each annulus would then be I(r)2πrdr.
A summation over all annuli would give you a rough estimate of the luminosity:

L ≈
∑
i

2πriIidri. (3)

However, doing the proper integration in eq.(2) is more accurate.
Inserting eq.(1) into eq.(2) gives:

L =

∫ rmax

0

2πI0r exp(−
r

a
) dr. (4)

Even in the case of an infinite exponential disk (rmax = ∞), the resulting luminosity is finite.
Eq.(4) becomes:

L = 2πI0

∫ ∞

0

r exp(− r

a
) dr. (5)

This is a standard integral (general form
∫
x exp(cx) dx), which you can look up in integral

tables. The result is:

L = 2πI0

∫ ∞

0

r exp(− r

a
) dr = 2πI0

[
a2 exp(− r

a
)(− r

a
− 1)

]∞
0

= 2πI0(0 + a2) = 2πI0a
2. (6)

Even though real disk galaxies are not infinite, eq.(6) often provides a good estimate of the
luminosity, since the faint outskirts of the disk actually contribute very little to the overall integral.
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Figure 1: Schematic illustration of a face-on disk.

2. Dust corrections
A star-forming galaxy is observed to have an apparent R-band magnitude of mR = 23.0 mag, an
Hα flux of fHα = 1.0×10−15 erg s−1 cm−2 and a flux ratio between the Hα and Hβ emission lines
of Hα/Hβ = 3.5. Use this information to correct the R-band magnitude and the Hα flux for dust
attenuation within the galaxy.

Solution: The so-called Balmer decrement – the observed ratio of the fluxes of the Hα and Hβ
emission lines – serves as a very convenient diagnostic for dust attenuation/extinction in galaxies
and star-forming regions.

Since the intrinsic Hα-to-Hβ ratio can be derived from recombination theory, and is usually
assumed to be (Hα/Hβ)0 = 2.871 in the absence of foreground dust, the measured Hα/Hβ mea-
sures dust reddening along the line of sight. Since dust affects short wavelengths more than long
wavelengths (i.e. affects Hβ at 4861 Å more than Hα at 6563 Å), the Hα/Hβ flux ratio gets
boosted by foreground dust.

The relation between observed flux f(λ) and intrinsic, unattenunated flux f(λ)0 is given by
(eq. 2.16 in Schneider’s book):

f(λ) = f(λ)0 exp(−τλ) (7)

This may be rewritten (eq. 2.17 in Schneiders book)

f(λ) = f(λ)0 × 10−0.4A(λ) (8)

where A(λ) is the dust attenuation (in magnitudes) at wavelength λ.
Adopting A(λ) = k(λ)E(B − V ), where k(λ) is an extinction or attenuation law which may

differ depending on environment, geometry etc., we can rewrite this as:

f(λ) = f(λ)0 × 10−0.4k(λ)E(B−V ) (9)

The attenuation law changes with the properties (size, composition) of the dust grains, the dust-
star-gas geometry, and many different attenuation laws are consequently used in the analysis of
galaxies. Here, we will use the Calzetti (2000, ApJ, 533, 682) curve, given by:

k(λ) = 2.659(−1.857 + 1.040/λ) +RV (10)

at wavelengths λ = 0.63–2.2 µm, and

k(λ) = 2.659(−2.156 + 1.509/λ− 0.198/λ2 + 0.011/λ3) +RV (11)

1formally valid for a 10,000 K nebula subject to case B recombination
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at λ = 0.12–0.63 µm. Here, RV is a parameter that relates the V -band dust attenuation AV to
the E(B − V ) colour excess due to dust: RV = AV /E(B − V ). Calzetti et al. (2000) argue for
RV = 4.05, which we will use in the following.

Using this machinery, we can derive the ratio of observed-to-intrinsic flux at any wavelength λ
(within the range for which the attenuation law is valid; 0.12–2.2 µm in this case), once we have
figured out the reddening E(B − V ).

Here, we will derive E(B − V ) from the ratio of the Balmer lines Hα and Hβ . There is a neat
little formula that does this (Calzetti et al. 1994, ApJ 429, 582):

E(B − V ) ≈ 0.935 ln

(
(Hα/Hβ)obs
(Hα/Hβ)0

)
(12)

Once you know E(B − V ), you can apply eqs.(9–16) to get the R-band dust attenuation AR and
correct your observed apparent magnitude using:

mR,0 = mR,obs −AR (13)

to get the dust-corrected apparent magnitude mR,0. Getting the dust-corrected fHα flux is even
easier – you just apply eq.(9):

fHα,0 = fHα × 100.4k(λHα)E(B−V ) (14)

Plugging in the numbers:
Using the observed emission-line ratio of (Hα/Hβ)obs = 3.5 and an assumed intrinsic ratio of
(Hα/Hβ)0 = 2.87, eq.(12) gives:

E(B − V ) ≈ 0.935 ln

(
3.5

2.87

)
≈ 0.1856. (15)

TheR-band has an effective central wavelength of λ ≈ 6580 Å (i.e. 0.6580 µm). At this wavelength,
the Calzetti curve (eq. 16) gives:

k(λ) = 2.659(−2.156 + 1.509/0.6580− 0.198/(0.65802) + 0.011/(0.65803)) + 4.05 ≈ 3.30. (16)

Plugging E(B − V ) ≈ 0.1856 and k(λ) ≈ 3.30 into A(λ) = k(λ)E(B − V ) gives: AR = 0.1856 ×
3.30 ≈ 0.61 mag. With an observed R-band magnitude of mR = 23.0, the dust-corrected R-band
magnitude eq.(13) gives:

mR,0 = mR,obs −AR = 23.0− 0.61 ≈ 22.39. (17)

The Hα line has a wavelength of λ ≈ 6563 Å (i.e. 0.6563 µm). At this wavelength, the Calzetti
curve (eq. 16) gives:

k(λ) = 2.659(−2.156 + 1.509/0.6563− 0.198/(0.65632) + 0.011/(0.65633)) + 4.05 ≈ 3.31. (18)

The reason why k(λ) end up being so similar in eqs.(16) and (18) is of course that the wavelengths
are very close in these two cases. At other wavelengths, the dust corrections will differ greatly
from the values derived here. Anyway, adopting fHα = 1.0×10−15 erg s−1 cm−2, k(λ) ≈ 3.31 and
E(B − V ) ≈ 0.1856 in eq.(9) gives:

fHα,0 = 1× 10−15 × 100.4×3.31×0.1856 ≈ 1.8× 10−15 erg s−1 cm−2. (19)
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3. Star formation history
A local irregular galaxy with a gas mass of 3.8 × 109 M⊙ exhibits very strong Hα emission,
LHα = 6.0×1042 erg s−1, indicating ferocious star formation. Assuming a standard Salpeter IMF,
the current star formation rate (SFR) may be derived using:

SFR(M⊙ yr−1) = 7.9× 10−42LHα(erg s−1). (20)

For how long can this starburst be sustained, assuming:
a) the SFR to be constant over time?
b) the SFR to decrease with time, t, according to SFR(t) ∝ exp(−t/τ), where the e-folding decay
rate is τ = 100 Myr?

Solution: The gas mass converted into stars over the star formation history of the galaxy is given
by:

Mgas =

∫ tmax

0

SFR(t) dt. (21)

In the case of constant star formation (case a), the SFR is simply given by:

SFR(t) = SFR(0). (22)

Inserting eq.(22) into eq.(21) implies:

Mgas = tmaxSFR(0). (23)

Rewriting this gives:

tmax =
Mgas

SFR(0)
. (24)

Inserting eq.(20) into eq.(24) gives:

tmax =
Mgas

7.9× 10−42LHα
. (25)

In the case of exponentially declining star formation (case b), the SFR is given by:

SFR(t) = SFR(0) exp(− t

τ
) (26)

Inserting eq.(26) into eq.(21) implies:

Mgas =

∫ tmax

0

SFR(0) exp(− t

τ
) dt (27)

Solving this integral results in:

Mgas = SFR(0)τ

(
1− exp(− tmax

τ
)

)
(28)

Rearranging gives:

tmax = −τ ln

(
1− Mgas

SFR(0)τ

)
(29)

Inserting eq.(20) into eq.(29) gives:

tmax = −τ ln

(
1− Mgas

7.9× 10−42LHατ

)
(30)

Plugging in the numbers:
Inserting Mgas = 3.8× 109 M⊙ and LHα = 6.0× 1042 erg s−1 into eq.(25) gives:

tmax =
3.8× 109 M⊙

7.9× 10−42 × 6.0× 1042
≈ 80× 106 yr (31)
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Hence, star formation can only be sustained for 80 Myr in the case of a constant SFR.
Inserting Mgas = 3.8 × 109 M⊙ and LHα = 6.0 × 1042 erg s−1 and τ = 100 Myr into eq.(32)

gives:

tmax = −100× 106 ln

(
1− 3.8× 109

7.9× 10−42 × 6.0× 1042 × 100× 106

)
≈ 160× 106 yr (32)

Hence, star formation can be sustained for twice as long in the case where the SFR is expo-
nentially declining with an e-folding decay rate of τ = 100 Myr, compared to the constant-SFR
scenario.
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4. Emission-line equivalent widths
The total luminosity of the Hα emission line for a relatively young extragalactic star cluster is
inferred to be LHα = 4.8× 1040 erg s−1. The monochromatic continuum luminosity right next to
the line is Lλ,Hα cont = 5× 1037 erg s−1 Å−1. Use these data to estimate the Hα equivalent width
EW(Hα) of this line and estimte the age of the system.

Solution: The equivalent width EW of an emission line is simply given by the total luminosity
in the line (i.e. the monochromatic luminosity integrated over the line profile) divided by the
monochromatic continuum luminosity close to the line:

EW =
Lline

Lλ,cont

[erg s−1]

[erg s−1Å−1]
. (33)

In real-life situations, great care must be exercised when deriving Lline and Lλ,cont from observed
spectra, since:

• The emission line may be sitting in the middle of an absorption feature, which one must
then correct for

• The emission line may be blended with nearby lines

• The emission line may have a complicated spectral profile

• The continuum level may be difficult to determine due to a strong continuum slope and/or
absorption features

To illustrate the general principle, we will here just ignore such complications and directly apply
eq.(33) to derive the equivalent width of the Hα line. Once we have figured out EW(Hα), spectral
synthesis models can be used to convert this into an age estimate. Figure 2 illustrates the evolution
of EW(Hα) as predicted by the Yggdrasil model (Zackrisson et al. 2011, ApJ, 740. 13).

As seen in Figure 2, EW(Hα) decreases with the age of the population. What is the physics
behind this? The Hα emission line itself is a recombination line that forms in the photoionized
gas surrounding young, hot stars. However, such stars are short-lived, and as soon as they start to
die off, the Hα luminosity drops. The continuum beneath the line has two different components:

1. nebular continuum from the photoionized gas. At these wavelengths, it’s main free-bound
processes; at longer wavelengths free-free emission starts to become more important

2. continuum radiation from stars.

The nebular continuum weakens with age of the stellar population due to the same mechanism
that is causing the Hα line luminosity to decrease with age. The stellar continuum, on the other
hand, has a more complicated time dependence, and can – for a brief period – actually become
stronger over time as red, evolved stars starts to form and contribute to the continuum at these
wavelengths.

The combination of these effects produces an EW(Hα) that decreases quickly with age for a
single-age stellar population2. In the case of more continuous star formation, the reservoir of hot
young stars is continuously replenished, but the increasing fraction of evolved, red stars still makes
EW(Hα) decrease over time, albeit at a somewhat slower rate. To illustrate this, Figure 2 features
two lines – one for a single-age stellar population (red) and one for a population with constant
star formation rate (black).
Plugging in the numbers:
Inserting LHα = 4.8× 1040 erg s−1 and Lλ,Hα cont = 5× 1037 erg s−1 Å−1 into eq.(33) gives:

EW(Hα) =
4.8× 1040

5× 1037
= 960 Å. (34)

2in the literature, single-age populations are also referred to instantaneous-burst populations, single stellar
populations or simple stellar populations
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Figure 2: The predicted temporal evolution of the Hα emission-line equivalent width EW(Hα).
These models assume a Salpeter IMF and metallicity Z = 0.020. The red line represents a single-
age stellar population (red line), whereas the black line is for a stellar population that continuously
forms new stars with a constant SFR.

Individual star clusters are usually treated as single-age stellar populations, so the model to
compare to is the red line in Figure 2. As seen, an Hα equivalent width of EW(Hα)=960 Å is
reached at an age of log10 Age ≈ 6.5–6.6, i.e. Age ≈ 3–4 Myr.

Should EW(Hα) be dust corrected before the comparison to models is made? This is where
it gets complicated. The naive answer would be “no”, since the emission line and the underlying
continuum are sampled at nearly the same wavelength, so even though dust may well have atten-
uated both the line and the continuum, the amount of attenuation should be that the same for
the two components, thereby leaving the equivalent width unaltered. However, in real life, the
nebular and stellar contributions may come from different regions with different dust content. It
is, for instance, often argued that the Hα line emission in galaxies comes from star-forming regions
with a high dust content, whereas the Hα continuum is dominated by old stars, located in regions
with low dust content. In this case, dust will decrease EW(Hα), and various correction schemes
for this have been developed in the literature. If this mechanism would be at work in our target
star cluster, the age estimate we arrived at above would be an upper limit, since the intrinsic (i.e.
dust-corrected) EW(Hα) would be higher than the one we derived.
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5. Black holes in galaxies
A quasar radiating at the Eddington luminosity has a supermassive black hole of mass 4×108 M⊙
and is situated in a galaxy with a total gas mass of 1× 109 M⊙. Use this information to esimate
the maximum lifetime of the quasar.

Solution: The Eddington luminosity represents the maximum luminosity that an object powered
by the spherical accretion of gas can attain. This is given by:

LEdd ≈ 1.3× 1031
(

M

M⊙

)
[W ] (35)

where M is the mass of this object. For an accretion rate Ṁ , the luminosity that can be extracted
from the accetion process is:

L = ηṀc2, (36)

where η is the efficiency of the energy conversion. Under the assumption of constant accretion
rate, the gas mass Mgas consumed over a time interval ∆t is given by:

Mgas = Ṁ∆t (37)

Rewriting eq.(37) gives:

Ṁ =
Mgas

∆t
, (38)

and inserting this into eq.(36) gives:

L =
ηMgasc

2

∆t
. (39)

If the object is radiating at the Eddington luminosity, we can equate (35) and (39) to get:

∆t =
ηMgasc

2

1.3× 1031(M/M⊙)
. (40)

Plugging in the numbers:
Maximizing the efficiency (i.e. setting η = 1.0) implies that less gas need to be consumed to
sustain the observed luminosity – this sets the maximum lifetime of the quasar. Inserting η = 1.0,
M = 4× 108 M⊙ and Mgas = 1× 109 M⊙ into eq.(40) gives:

∆t =
1.0× 1× 109 M⊙ × 1.99× 1030 kg ×

(
3× 108 m s−1

)2
1.3× 1031 × 4× 108 M⊙

≈ 3.44× 1016 s ≈ 1.09× 109 yr.

(41)
Hence, the quasar could in principle last 1 Gyr, but the efficiency of black hole accretion is typically
estimated to be η ≈ 0.1 (slightly less for a non-rotating, Schwarzschild black hole and slightly more
for a rotating Kerr black hole). Hence, the maximum lifetime is more likely to be ∼ 100 Myr.

Erik Zackrisson, April 2017
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