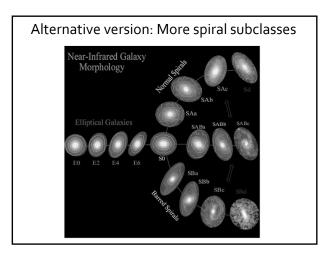
Physics of Galaxies 2017 10 credits Lecture 4: Disks and ellipticals

Outline I


- Disk galaxies
 - Surface brightness profiles
 - Stars and gas
 - Rotation curves
 - The Tully-Fisher relation
 - Spirals and bars

Outline II

- Elliptical galaxies
 - Surface Brightness Profiles
 - Stars
 - cD-Galaxies
 - Triaxiality
 - Stellar Motions
 - The Faber-Jackson Relation
 - Masses

Recall the Hubble Tuning Fork Elliptical Galaxies Sprots Sprots

Disk galaxies

•Sequence:

S0-Sa-Sb-Sc-Sd-Sm

SB0-SBa-SBb-SBc-SBd-SBm

Early-type disks

Late-type disks

- Outside the original Hubble Tuning fork:
 - Sd-galaxies: Bulgeless disks
 - Sm-galaxies: Magellanic spirals (almost irregular, prototype LMC)

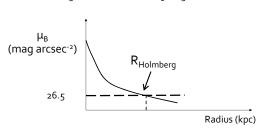
Disk galaxies	Dis	k gal	laxies
---------------	-----	-------	--------

	S0-Sa	Sd-Sm
Spiral arms:	Absent or tight	Open spiral
Bulges:	Big	Small
Color (B-V):	Red (0.7-0.9)	Blue (0.4-0.8)
Young stars:	Few	Many
HII-regions:	Few, faint	Many, bright
Surface brightness:	High	Low
Mass:	High	Low
Rotation:	Fast rising	Slow rising

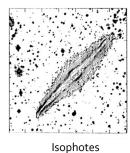
Intermission: Which of these disks is the most "early-type"?

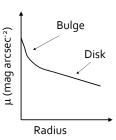
Surface Brightness

Size of object $\alpha \approx \frac{D}{d}$ Distance to object


$$I(r) = \frac{F}{\alpha^2} = \frac{L/4\pi d^2}{D^2/d^2} = \frac{L}{4\pi D^2}$$

 $\mu(r) \propto -2.5 \log_{10} I(r)$


- I(r) usually L_{\odot} kpc⁻², but $\mu(r)$ in mag arcsec⁻²
- Determines observability of extended objects (e.g. galaxies)
- *I(x)* independent of distance(!) in local universe...
- ... but subject to factor (1+z)-⁴ of redshift dimming →
 One reason why high-redshift objects are extremely difficult
 to detect


Surface Brightness

- Sizes of galaxies often given out to a specified isophote:
 - R₂₅: Radius at 25 mag arcsec⁻² in B-band
 - Holmberg radius: Radius at 26.5 mag arcsec⁻² in B-band

Surface Brightness Profiles I

(constant surface brightness)

Surface Brightness Profiles II

• Radial direction — Sérsic formula:

$$I(R) = I(0) \exp(-(R/h_R)^{1/n})$$

 h_R : Scale length

I(o): Central surface brightness

 $n=4 \rightarrow \text{de Vaucoleur formula (for bulges \& ellipticals)}$

 $n=1 \rightarrow \text{Exponential disk (for the disks of disk galaxies)}$

Surface Brightness Profiles III

• Profiles of exponential disks (n=1):

$$I(R) = I(0) \exp(-R/h_R)$$
 (L_o kpc⁻²)

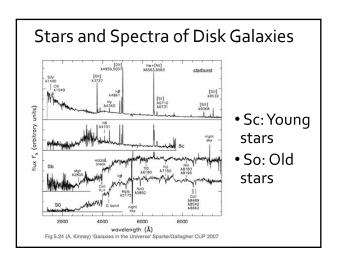
• Alternative formulation (3.14 in Schneider):

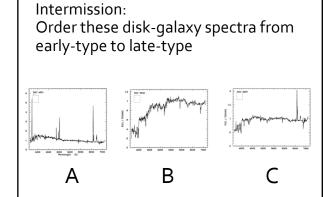
$$\mu(R) = \mu_0 + 1.09 \frac{R}{h_p}$$
 (mag arcsec⁻²)

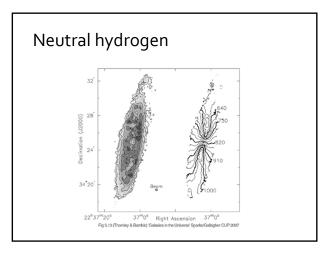
 μ_o : central surface brightness

Surface Brightness Profiles IV

• Alternative formulation of Sérsic formula (3.39 in Schneider)

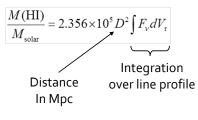

$$I(R) = I_e \exp(-b_n [(R/R_e)^{1/n} - 1])$$

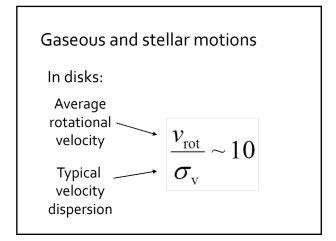

 R_e : effective radius

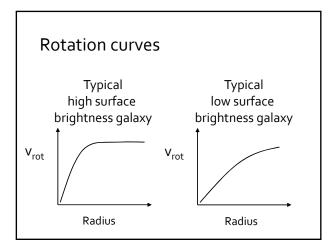

(radius inside which half of the light is emitted)

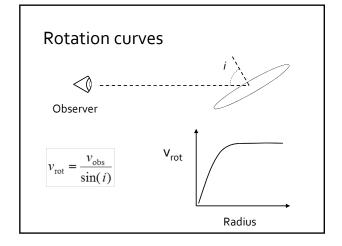
Ie: Surface brightness at Re

 b_n : coefficient given by $b_n \approx 1.999n$ -0.327



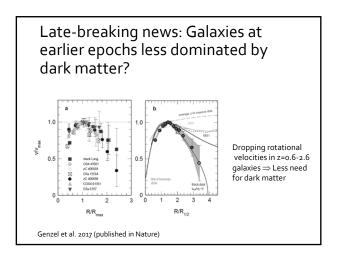

Neutral hydrogen

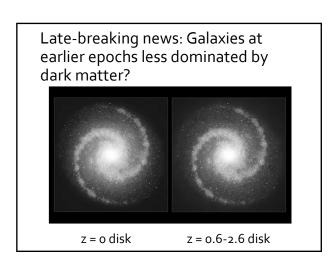

• Flux in 21 cm line \rightarrow HI mass:

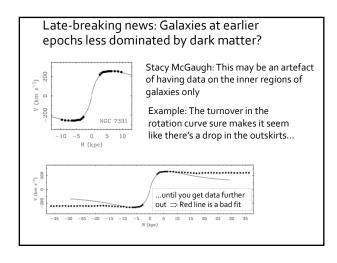


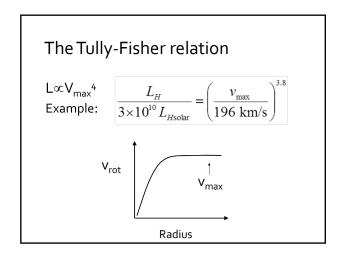
Molecular hydrogen

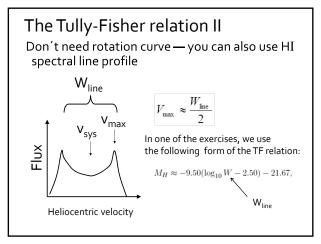

- •H₂ most abundant molecule, but difficult to observe in emission
- •2.6 mm line of CO can be used as tracer:
 - • $M(H_2)/F(Co)=X$
 - However: the conversion factor X depends on metallicity; very uncertain in metal-poor galaxies

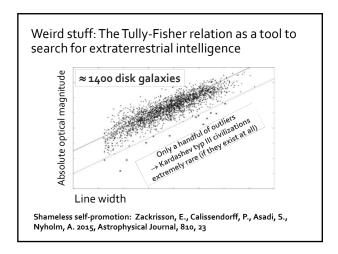


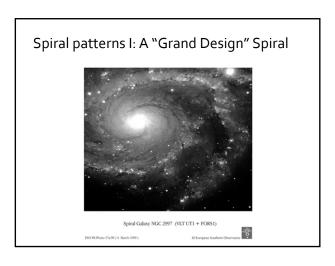


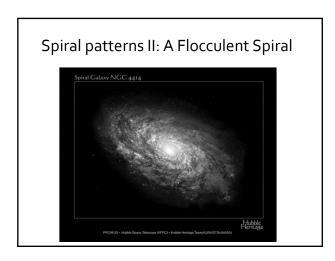


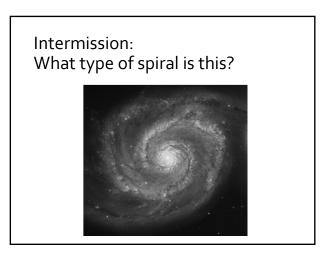

Rotation curves Recall from lecture 3: $M(< R) = \frac{v_{\rm rot}(R)^2 R}{G}$

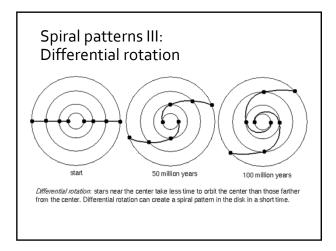


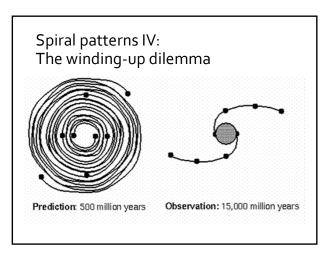


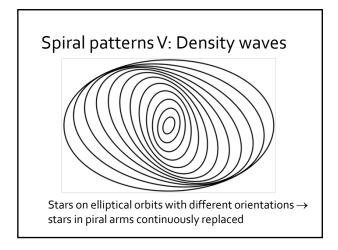


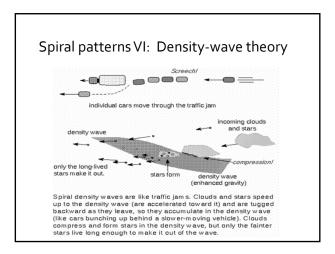


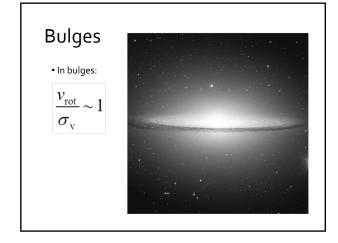




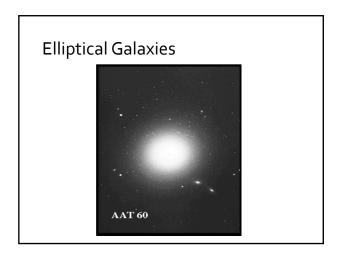


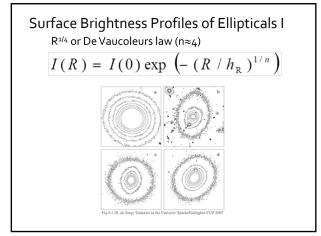


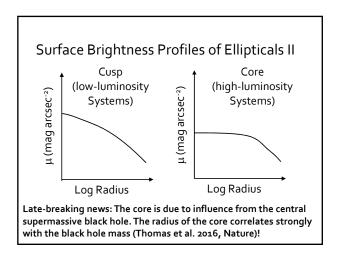


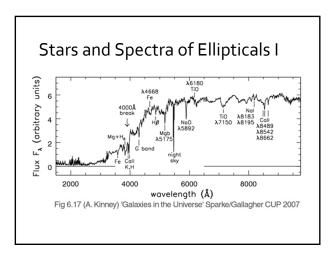


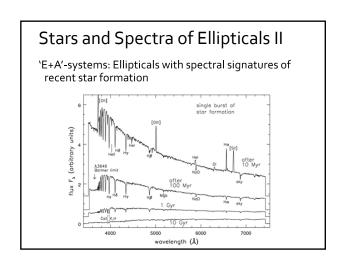
Spiral patterns VII: Problems with density waves

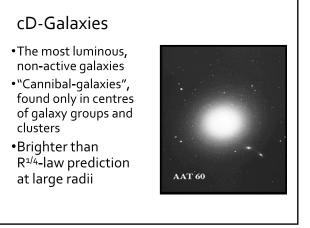

- From where does the density wave get its energy?
 - From the rotation of the disk?
 - From a companion galaxy?
 - Internal forces from a central bar?
- •Spiral patterns remain mysterious...

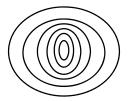

• At least 50% of all disk galaxies have bars • Bars are not density waves! • Elongated orbits • Face-on disk with bar Bar with elongated orbits




Intermission: The Galaxy Zoo Project


https://www.galaxyzoo.org/





Triaxiality

- $\bullet X \neq Y \neq Z$
- •Isophote twisting: a tell-tale sign of triaxiality

Stellar Motions in Ellipticals

•Flattening of ellipticals not always due to rotation, but rather velocity anisotropy $(\sigma_x \neq \sigma_y)$

$$\frac{v_{\text{max}}}{\sigma_{\text{v}}} \approx 0.01 - 1$$

The Faber-Jackson Relation

$$L \propto \sigma_o^4$$
, e.g.

$$\frac{L_{V}}{2 \times 10^{10} L_{V_{\text{Solar}}}} = \left(\frac{\sigma_{0}}{200 \text{ km/s}}\right)^{4}$$

which is a projection of the "fundamental plane" of elliptical galaxies:

$$R_e \propto \sigma_0^{1.4} \langle I \rangle_e^{-0.85}$$

where $\rm R_e$ is the effective radius, σ_o is the central velocity dispersion and ${< \hspace{-1.5pt} \rm I}_e$ is the average surface brightness within $\rm R_e$

Mass Determinations for Ellipticals

- More difficult than for disk galaxies
- A few methods:
 - For gas-rich Es: HI rotation curves
 - X-ray gas: $M=f(\rho_{gas}, r, T)$
 - Virial theorem: $M = f(\sigma, r)$ with
 - \bullet Stellar $\sigma(\textbf{r})$ from absorption lines
 - Stellar $\sigma(\textbf{r})$ and \textbf{v}_{rot} from planetary nebula emission lines