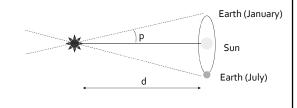

Physics of Galaxies 2018 10 credits

Outline


- The Extragalactic Distance Scale
- The Milky Way Galaxy
- The Local Galaxy Group

The Extragalactic Distance Ladder The object of the extragalactic Distance Ladder Solar system (10² h) Wenue Solar system (10² h) Find the extragalactic Distance Ladder Solar system (10² h) White dwarf Surface temperature main-sequence Solar system (10² h) White dwarf Surface temperature main-sequence Solar system (10² h) White dwarf Surface temperature Surface temperature Surface temperature Miley Way Address Weekey Lorgene Note: Outdated range estimates...

The Extragalactic Distance Ladder: Trigonometric Parallax

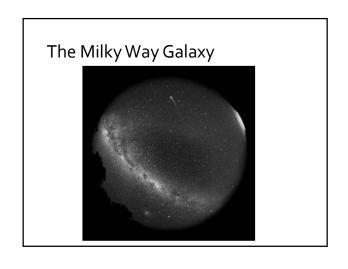
- d (pc) = 1/p (arcsec)
- Currently applicable out to ~ 500 pc (closest stars)
- Satellites (e.g. Gaia) → Applicable out to several kpc

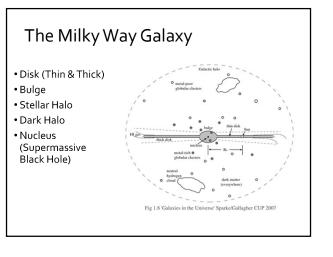
The Extragalactic Distance Ladder: Main-Sequence Fitting • M = m - 5log (d/10 pc) • Star clusters and Galaxies • Applicable for Milky Way and the Magellanic Clouds Luminosity Observed cluster (Apparent luminosity) Temperature

The Extragalactic Distance Ladder: Cepheid Variables • Period → Luminosity (Absolute Magnitude) → Distance • Applicable out to ~ 30 Mpc (slightly beyond the Virgo galaxy cluster) Luminosity Luminosity (L_{solar}) 10000 Luminosity

Time

Period (days)


The Extragalactic Distance Ladder: Tully-Fisher / Faber-Jackson


- •Tully-Fisher: $L \propto v_{max}^4$ (for disk galaxies)
- •Faber-Jackson: $L \propto \sigma_v^4$ (for elliptical galaxies)
- •Applicable out to ~ 100 Mpc (the Coma galaxy cluster)

The Extragalactic Distance Ladder: SN Type Ia • Applicable at least out to z≈2 (≈ 3000 Mpc) • Formed in binary system in which matter from a red giant falls onto a white dwarf • Absolute -17 magnitude -15 o 100 300 Days after maximum

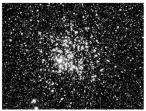
The Extragalactic Distance Ladder: Hubble's Law DISCOVERY OF EXPANDING UNIVERSE • $V = H_o$ d • Note! Not a real velocity! • Peculiar motions irrelevant at high distances • $z <<1 \rightarrow v/c \approx z$ • Higher-order terms required at high redshifts

The Milky Way Galaxy

- Spiral galaxy of type Sb/Sbc or SABbc
- Contains about 200-400 billion stars

 $n(R, z, S) = n(0,0,S) \exp[-R/h_R(s)] \exp[-|z|/h_z(s)]$ h_R : Scale length, h_z : Scale height
S: Stellar type

The Milky Way Galaxy


- •The concept of populations:
 - •Three types with increasing age: population I, II & III. Pop III stars are the first to form in the universe.
 - No strict dividing line between the types
 - Less used today, except pop III which is a hot topic in the high-redshift Universe
- •Correlation between age and metallicity (amount of heavy elements) → can obtain information both about when and where the stars formed

The Milky Way Stellar Disk I

- Radius of the disk: > 15 kpc
- Scalelength h, of the disk: 2—4 kpc
- Disk luminosity: 15—20 ×109 L_{solar}
- Stellar Disk mass: $6 \times 10^{10} \, \mathrm{M_{solar}}$
- Thin disk:
 - Scaleheight h, : 300—400 pc
 - Contains 95% of all disk stars & all the young ones
 - High metallicity
- Thick disk:
 - Scaleheight: 1000—1500 pc
 - Lower metallicity

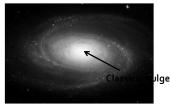
The Milky Way Stellar Disk II

- Stars form in clusters and associations
- Open clusters:
 - Few hundred stars at most
 - Luminosity 100-30000 L_{solar}
 - Core radius ~ few pc
 - Young (Only ~5% more than 1 Gyr old)
 - More bound than associations, but most dissolve over a few hundred Myr

Messier 11 – the Wild Duck Cluster: An open cluster in the Milky Way

The Milky Way Stellar Disk III

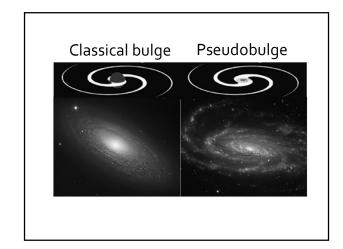
- Associations:
 - Not gravitationally bound
 - Forms temporary systems



An OB association in the Large Magellanic Cloud

The Milky Way Bulge

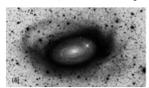
- Flattened (a/b ≈ 0.6), radius ~ 1 kpc
- Possibly contains bar (2—3 kpc long)
- Rotates in same direction as disk stars, but slower (≈ 100 km/s)
- Contributes 20% of the MW luminosity
- Stars several Gyr old, but younger than in halo
- Average stellar metallicity \approx 0.5 Z_{solar}


Bulge and pseudobulge – unclear which type the Milky Way has

Classical bulge: Resembling a small elliptical galaxy, formed through mergers

Pseudobulge: Disk-like properties, formed internally

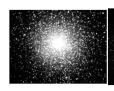
(so-called "secular evolution"). No mergers required.



Intermission: bulge or pseudobulge?

The Milky Way Stellar Halo I

- · Somewhat flattened, but rounder than bulge
- Radius ≈ 50 kpc
- Stellar density $\propto r^{-3.5}$
- Total mass in halo stars: ~ 109 Solar masses
- 1/1000 of all local stars belong to halo
- Eccentric orbits, sometimes retrograde


Highly processed image, showing the stellar halo (black) around the

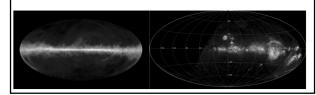
The Milky Way Stellar Halo II

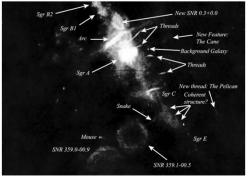
- Globular clusters
 - Up to 1 million stars
 - Total mass ~ 105 Msolar
 - No dark matter (at least not anymore)
 - Core radius < 1 pc
 - Tidal / truncation radius 20-30 pc
 - About 150 objects known, ages 10—14 Gyr (oldest objects in the Galaxy)
 - Typically very metal-poor

Intermission: Which of these is not a globular cluster?



The Milky Way Dark Halo

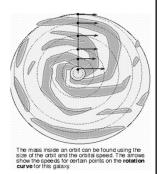

- Radius > 100 kpc
- Contributes ~ 90% of the mass inside 100 kpc
- Content unknown
- Standard assumption: Weakly Interacting Massive Particles (WIMPs)


Dark matter halo from the Aquarius simulation

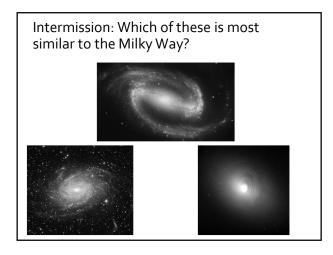
The Milky Way Gaseous Disk

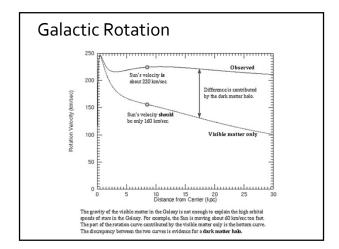
- 4— 8×10^9 solar masses HI
- 2—4 × 10⁹ solar masses H₂ (but uncertain)
- Dust ~ 1 % of HI mass

The Milky Way Centre


1 m Radio observations

The Milky Way Centre


- Infrared light shows a dense star cluster which peaks at the center, near Sagittarius A*.
- The high velocities of the stars require a mass of ${\sim}2~x~\text{10}^6~M_{solar}$ within 1 pc
- Stars are only 1000 AU apart
- Collisions every ≈ 10⁶ years!
- The centre of the star cluster likely hosts a Supermassive Black Hole (although somewhat lightweight)


Galactic Rotation

- Differential rotation
- Neutral hydrogen: 21 cm line
- Distance Sun-centre: 8 kpc
- Sun's Velocity around the centre 220 km/s
- One revolution in 250 Myr

Galactic Rotation Perseus arm Onon-Cygnus arm Sun Sagntarius arm

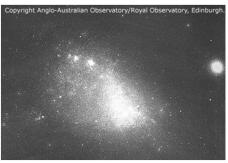
The Local Group

- •The Local Galaxy Group
 - •Local Group "Geography" & Inventory
 - •The Large and Small Magellanic Clouds
 - •The Magellanic Stream
 - •Satellites of the Milky Way
 - •The Andromeda Galaxy & M33

Local Group "Geography" Soo-too rockus sphere. Plane of Miky Way NGC 6822 NGC 6822

The Local Group Inventory

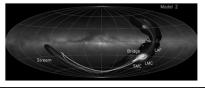
- Radius ~1.2 Mpc
- Held together by gravity (decoupled from the "Hubble flow")
- Three spirals: Milky Way, M31, and M33
- Two more massive galaxies:
 Irregular Large Magellanic Cloud
 Small (dwarf) elliptical galaxy M₃₂
- The rest are dwarf galaxies (dI, dE, dSph) with $M_{V} > -18$


The Local Group Inventory

- •The Local Group does not contain:
 - Blue compact dwarf galaxies
 - Dwarf spirals
 - Massive ellipticals
 - Active galaxies

The Large Magellanic Cloud (LMC)

The Small Magellanic Cloud (SMC) Copyright Anglo-Australian Observatory/Royal Observatory, Edinburgh

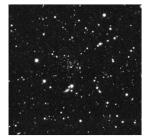


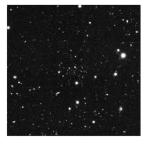
The Magellanic Clouds

LMC SMC Diameter 7 deg. 24 deg. 50 kpc Distance 63 kpc Total mass 6×10⁹ s.m. $2 \times 10^9 \, \text{s.m.}$ Luminosity ~10% of MW ~1% of MW 7×10^8 s.m. $6.5 \times 10^{8} \, \text{s.m.}$ HI mass Z 0.70 solar 0.25 solar 0.09 0.32 M(HI)/M(total)

The Magellanic Stream & Bridge

- Magellanic Bridge:
- HI bridge between LMC and SMC
- Size ≈ 20 kpc
- Mass: 2×10⁸ solar masses HI
- Contains stars formed 10—25 Myr ago
- \bullet Could have formed 200 Myr ago when LMC and SMC where the closest
- Magellanic Stream:
- Gas trailing behind LMC and SMC
- Wraps 1/3 around the sky



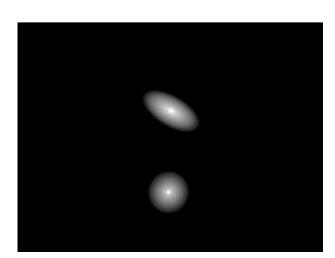

The 11 "Classical" Satellites of the Milky Way

- LMC
- SMC
- Fornax But dark matter theory suggests
 Sagittarius a factor of ~ 10 more →
- Leo I (DDO 74)
 Sculptor
 The missing satellite problem"
 Lots of so-called
- Leo II (DDO 93) ultrafaint dwarfs detected
 Sextans in the past decade
- Sextans in the past decade –
 Carina still unclear if this is the solution
- Draco (DDO 216)

Ultrafaint dwarf galaxies

- Some of the most dark matter-dominated systems known
- Almost impossible to spot "by eye"

The Andromeda Galaxy & M₃₃



M₃1 (Andromeda)

M₃₃ (NGC 598)

- Andromeda, Milky Way, M₃₃ The Big Spirals of the Local Group-
- •Luminosity: $1.5 \times MW$, $1 \times MW$, $0.35 \times MW$
- •Andromeda & The Milky Way have warped disks, probably caused by interaction with M₃₂ and Magellanic Clouds
- •Milky Way & Andromeda may collide in ~ 5 Gyrs

