Physics of Galaxies 2018
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Lecture 8: The High-Redshift Universe
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* The first stars and galaxies
* End of the dark ages

* Pop Ill stars

* Dark stars

* First galaxies




* Finding high-redshift objects
* Deep fields
* Gravitational lensing
* Dropout techniques
* Lyo searches

* Future prospects



The end of the dark ages
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Minihalos

First stars
(in minihalos)

First galaxy

Halo masses (M
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e Population |: Metal-rich stars
Example: Stars in the Milky Way disk

e Population II: Metal-poor stars
Example: Stars in the Stellar halo of the Milky Way

e Population lll: (Almost) Metal-free stars
Example: Stars forming in minihalos at z=20



Star formation in dark matter halos

Dark matter halo ~ The gas cools by
with gas inside radiating photons Star formation

and contracts

Problem: Low metallicity at high redshifts —
Lack of efficient coolants



* These stars will be
; and

* Mass range 10*-103 Msolar
(but predictions still shaky)

* The first ones are expected in
minihalos — prior to the
formation of the
first galaxies.

* Feedback — Only a few stars
(maybe just one) per minihalo



Intermission: The first stars(?)




Normal star = hydrogen bomb
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Star fueled by WIMP
annihilation rather
than hydrogen fusion

WIMP annihilationin Gas cools and
centre of CDM halo falls into the centre




* Conventional Pop lll stars

— Teff ~ 50 000-100 000 K ) b \

— M ~10%*-103 Msolar Q

— Lifetime t ~10%-107 yr - r
* Pop lll dark stars - ' :

— Teff = L000-50000 K Cooler!

— M ~ 102-107 Msolar More massive???

— Lifetime 1 ~10%-10% yr More long-lived???

Problem: Still no consensus on likely masses or life times
of dark stars



The sizes of primordial stars |
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The sizes of primordial stars I

Supermassive dark star



Formation of the first galaxies

Formation of a
~ 10/ I\/Isolar
dark matter halo

Simulation runs
fromz=~40to1a
(tyniy = 65 to 430 Myr)




Star formation
in minihalos

Minihalo mergers
and further
star formation

Object qualifies
as a galaxy

Z~23
Luniv = 145 Myr

Z~18
tUniv ~ 215 Myr

z~11
Cuniv ® 430 Myr

Gas density shapshots




A galaxy is born (at z = 10)




Time since the
Big Bang (years)

~ 300 thousand

~ 500 million

~ 1 billion

~ 9 billion

~ 13 billion

Relonization
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» Population Il stars in minihalos?

o High-redshift galaxies? «—— Popular scenario
» Accreting black holes?

» Decay of exotic particles?



Intermission: Name the telescope!




Name the telescope!
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Intermission: Name the telescope!
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Imaging strategies

* Deep field-style observations
* Very long exposures of single patch (devoid of bright
foreground objects) in the sky
* Cluster-lensing observations

* Hunt for gravitationally lensed background objects in
relatively short exposures (few hours per filter) of a low-
z galaxy cluster



The Hubble Extreme Deep Field

Total exposure time: 23 days
(2 million seconds)
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Example of one of the most
distant galaxy candidates so far

2.4 arcsec X 2.4 arcsec

Bouwens et al. (2010)
Z = 10 candidate
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Pros and Cons of Cluster Lensing

- N 7 Magnification
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Galaxy cluster

+ Background sources appear brighter by a factor u

- The volume probed becomes smaller by a factor u

Bottom line: Lensed survey fields can be superior for sources
that are very faint, not too rare and not too highly clustered




Name

GN-z11

EGSY8p7

GRB 090423

EGS-zs8-1

z7 GSD 3811

z8 GND 5296

Most distant astronomical objects with spectroscopic redshift determinations

Redshift | Gigalightyears. Light travel distance®

()

z=11.09 | 13.39

z=8.68 |13.23

z=8.2 13.18

z=7.73 |13.13

z=766 |13.11

z=751 |13.10

Type
(Gly)" P

Galaxy

Galaxy

Gamma-ray burst

Galaxy

Galaxy

Galaxy

Notes

Confirmed galaxy®

2l

Confirmed galaxy

[4115]

Confirmed galaxy™

galaxy!”

Confirmed galaxy[e‘“g]



Two techniques:

* Dropout selection

* Crude redshift estimator (Az=1.0)
* But works well for all high-z, star-forming galaxies

* Lyman-alpha surveys
* High-precision redshift estimation (Az=0.1)
* But doesn't work well at z>6
* And not all galaxies are Lya-emitters




No emission
lines

Young galaxy Old galaxy



Absorbed by the neutral
interstellar medium
within the galaxy

Lyman break
- (912A)




Z=0 Z>2.5
B-V ~ normal
} 912 A +  U: extremely faint

A/Lyman break

Flux Flux

—— -

U U(B V

- |

Wavelength Wavelength






At even higher z,
neutral gasin
the IGM start

to absorb
everything

shortward of Lya
(rest A=1216 A)




Eventually, the break shifts into the near-
IR. Example: z-band dropout (z=6.5)




Intermission:
Which of these drop-out candidates is
likely to have the highest redshift?




* Potentially the brightest line in rest frame UV/optical

* Two narrowband images (covering continuum and
line) required for survey of redshift range (Az~0.1)

Sharp drop
(absorption
in neutral
IGM)

Lyman-a at z=7



Problem |: Lyman-oa notoriously
difficult to predict

* Lyo resonant line —
random walk through
neutral interstellar
medium

* Many Lya photons
destroyed by dust before
emerging

* Lya flux ranges from low
to very high




Abrupt drop —
Lya not good
way to find z>6

galaxies
(but may be good
. way to probe
R — Prasrae il reionization)
redshift
Fraction of Hayes et al. 11
Lya. photons

reaching the
observer



* Estimate the galaxy type (morphological) and assume that the
galaxy is identical to some template (often an average over
many galaxy spectra of similar type)

\ Measured
Flux photometrical
data points
Wavelength
Z=0 Redshifted
template spectrum template spectrum
A (bad match) 4 (good match)

Flux /’\ Flux | ----- >/\\

|

Wavelength Wavelength



New telescope for high-z studies:
ALMA

Atacama Large Millimeter/
submillimeter Array (ALMA):
An array of seventy 12-m
antennas operating @
200-10000 UM (sub-mm)

Can be used to search for dust
emission and emission lines

like [ClI] @ 158 um and [Olll] @88 um
(rest-frame) from z>6 galaxies




MB2 spectrum — 4 x 107 Lo

Flux density {(Jy)

3 4567 8B 210
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10
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ALMA receivers

Dust continuum flux drops slowly with z (if no source
evolution).




Future prospects: JWST

James Webb Space Telescope
‘The first light machine’

To be launched by

NASA /ESA /CSA Iin 2020

6.5 m mirror

Observations @ 0.6-29 um
Useful for:

Galaxies up to z = 15

Pop lll supernovae
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Future prospects: ELT

g m Extremely Large Telescope (ELT)
estimated to be completed in 2024.



