Physics of Galaxies 2020 10 credits Lecture 8: The High-Redshift Universe

Outline: Part I

- Mysteries in the first billion years
- The first stars and galaxies
- Dark ages, cosmic dawn
- Pop III stars
- First galaxies
- Supermassive black holes
- Cosmic reionization

Outline: Part II

- Finding high-redshift objects
 - Deep fields
 - Gravitational lensing
 - Dropout techniques
 - Ly α searches
- Future telescopes

Mysteries in the first billion years

- •What were the first stars (Population III) like? Very massive? Some even supermassive?
- Where did the first supermassive black holes come from?

High-z quasars \rightarrow Black hole mass ~10⁹ M_o at z ~7 How do they reach this mass in less than 1 Gyr? What were the black hole seeds?

• How did reionization progress? How did the neutral fraction evolve with redshift? Did galaxies do all of the work? Did early AGN contribute?

Stars: Population I, II and III

- Population I: Metal-rich stars Example: Stars in the Milky Way disk
- Population II: Metal-poor stars Example: Stars in the Stellar halo of the Milky Way
- Population III: (Almost) Metal-free stars Example: Stars forming in minihalos at z≈30

Population III stars

- The very first generation of stars started forming in minihalos, before the first galaxies
- Formed from gas of primordial composition (H,He + trace amounts of Li; metallicity Z≈o)
- Cooling properties of Z≈o gas → These stars should be very massive, hot (~10⁵ K) and short-lived.
- Characteristic mass expected to be ${\sim}10^{\rm 1}{-}10^{\rm 3}\,M_{\odot}$ (but predictions are shaky)
- Produces the metals required for the metal-enriched stars seen today (Pop
- metal-enriched stars seen today (Pop I & II) and lots of ionizing UV radiation

Supermassive black holes in the early Universe

nature

An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5

Eduardo Bañados 💐, Bram P. Venemans, Chiara Mazzucchelli, Emanuele P. Farina, Fabian Walter, Feire Wane. Roberto Davidi. Daniel Stern. Xianhui Fan. Frederick R. Davies. Josenh F. Hennawi.

Previous record holder: Mortlock (2011) quasar, with a black hole mass of $\approx 2 \times 10^9 M_{\odot}$ SMBH at $z \approx 7.1$ At these redshifts, the Universe is less than 1 Gyr old.... Problem: How do you form a $\sim 10^9 M_{\odot}$ SMBH in that time?

PART II: HOW TO FIND THEM

- Photometry vs spectroscopy
- Selection techniques: Dropouts, Lyα
- Surveys: Deep fields and gravitational lensing
- Telescopes: Today and tomorrrow

Imaging at high redshift Imaging at high redshift Imaging at high redshift This is what a galaxy may look like to a low-redshift astronomer.... Imaging at high redshift Imaging at high redshift

 Intermission:

 why are redshift records important?

 constraints

 constraints

 constraints

 white

 white

Selecting high-z galaxy candidates

Two techniques:

- Dropout selection
- Crude redshift estimator (∆z≈1.0)
 But works well for all high-z, star-forming galaxies
- Lyman-alpha surveys • High-precision redshift estimation (Δz≈0.1)
 - High-precision redshift estimation (Δz≈0.1
 But doesn't work well at z>6
 - \bullet And not all galaxies are Ly $\alpha\text{-}emitters$

Telescopes: Today

Commonly used in high-z studies:

• Near-IR: 8-10 m telescopes on the ground Hubble space telescope

- Mid-IR: Spitzer space telescope (retired)
- mm/sub-mm: ALMA, NOEMA
- •X-rays: Chandra X-ray observatory

Suitable for high-z studies:

- Large Binocular Telescope, 8.4m × 2 (Arizona)
- Hobby-Eberly Telescope, 10m (Texas)
- •Keck, 10m (Hawaii)
- •Subaru, 8.2m (Hawaii)
- Very Large Telescope, 8.2m (Chile)
- Gemini, 8.1m (Hawaii)

ALMA

Atacama Large Millimeter/ submillimeter Array: An array of seventy 12-m antennas operating @ 200-10000 µm in Chile

NOEMA: Somewhat similar array in the northern hemisphere

Main use at high z: Searching for dust continuum emission and emission lines like: [CII]@158 μ m, [OIII]@88 μ m. Resolution: ~0.1 arcsec Field of view: ~ 10 arcsec

Chandra X-ray observatory

- •Detects x-rays (1-100 Å; 10⁻⁴-10⁻² micron)
- •Resolution: ≈0.5 arcsec
- Field of view: ≈30 arcmin
- •Main use at high z: Finding signatures of black hole accretion (e.g. high-z quasars - but note that all quasars are not detectable in x-rays)

Telescopes: Tomorrow

- Near-IR from the ground: GMT, TMT, ELT
- Near/mid-IR from space: J WST, Euclid, WFIRST
- X-rays: Athena, Lynx

GMT, TMT, ELT

- Giant Magellan Telescope (Chile, 25m, 2029)
- Thirty-Meter Telescope (Hawaii, 30m, 2027?)
- Extremely Large Telescope (Chile, 39m, 2025)
- Main use at high redshift: Spectroscopy of high-z objects in the near-IR, at very high angular resolution (~0.01 arcsec)

James Webb Space Telescope

'The first light machine' 6.5 m mirror, near/mid-IR Launch: 2021 Unprecedented IR sensitivity and the only upcoming telescope to allow deep observations at 3-8 micron <u>Main use at high z:</u> Deep photometry (down to 31 AB mag) and spectroscopy for galaxies up to $z \approx 15$; searching for extreme-z exotication

$\begin{array}{l} \label{eq:second} \textbf{Euclid & WFIRST:} \\ \textbf{Near-IR survey telescopes} \\ \textbf{\cdot} \textbf{Euclid (ESA, 1.2m, 2022): Near-IR, field of view 0.53 deg^2, photometric limit m_{AB} \approx 26 AB mag Use at high z: Finding bright quasars at z \leq 9 \\ \textbf{WFIRST (NASA, 2.4m, 2025?): Near-IR, field of view 0.28 deg^2, photometric limit m_{AB} \approx 28 AB mag Use at high z: Finding rare types of objects as targets for GMT/TMT/ELT, surveying Lya-emitters \\ \end{array}$

Athena & Lynx: X-ray telescopes

- Athena (ESA, 1.4m², 2031): 5-10 arcsec resolution, o.44deg² field of view Use at high z: Finding quasars up to z≈10
- Lynx X-ray Observatory (NASA, 2m², 2036?): 0.5 arcsec resolution, 0.13 deg² field of view Use at high z: mini-quasars (black hole mass down to ~10⁴ M_☉) at z≈7-10

