Physics of Galaxies 2020
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Lecture 8: The High-Redshift Universe
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* Mysteries in the first billion years

* The first stars and galaxies
* Dark ages, cosmic dawn
* Pop lll stars
* First galaxies
* Supermassive black holes
* Cosmic reionization



* Finding high-redshift objects
* Deep fields
* Gravitational lensing
* Dropout techniques
* Lya searches

* Future telescopes



The first billion years of cosmic history
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Unsolved puzzles in this era:
Cosmic reionization, origin of supermassive
black holes, nature of the first stars



*What were the first stars (Population Ill) like?
Very massive? Some even supermassive?

* Where did the first supermassive black holes

come from?

High-z quasars — Black hole mass ~109 M ,atz ~7
How do they reach this mass in less than 1 Gyr?
What were the black hole seeds?

* How did reionization progress?
How did the neutral fraction evolve with redshift?
Did galaxies do all of the work? Did early AGN contribute?



Structure formation in a dark matter Universe

Simulation credit: Benedict Diemer; Dark matter only; Halos marked by circles
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"Dark ages”

Minihalos 7= 5o
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e Population |: Metal-rich stars
Example: Stars in the Milky Way disk

e Population II: Metal-poor stars
Example: Stars in the Stellar halo of the Milky Way

e Population lll: (Almost) Metal-free stars
Example: Stars forming in minihalos at z=30



Star formation in dark matter halos

Dark matter halo ~ The gas cools by
with gas inside radiating photons Star formation

and contracts

Problem: Low metallicity at high redshifts —
Lack of efficient coolants



* The very first generation of stars —
started forming in minihalos, before
the first galaxies

* Formed from gas of primordial
composition (H,He + trace amounts of
Li; metallicity Z=o0)

* Cooling properties of Z=o gas — These
stars should be ;
and

* Characteristic mass expected to be
~10*-103 M, (but predictions are

shaky) ’

* Produces the metals required for the
metal-enriched stars seen today (Pop |
& Il) and lots of ionizing UV radiation




Formation of the first galaxies

Formation of a
~ 10/ I\/Isolar
dark matter halo

Simulation runs
fromz=~40to1a
(tyniy = 65 to 430 Myr)




Star formation
in minihalos

Minihalo mergers
and further
star formation

Object qualifies
as a galaxy

Z~23
Luniv = 145 Myr

Z~18
tUniv ~ 215 Myr

z~11
Cuniv ® 430 Myr

Gas density shapshots




A galaxy is born (at z =~ 10)

. /s
Greifet al. 08 i w

Quite messy, isn't it?
Early on, we don't expect disks or ellipticals to
form — all galaxies are likely to be irreqular due
to high merger rates




nature

International jou

Letter Published: 06 December 2017

An 800-million-solar-mass black hole in a

significantly neutral Universe at a redshift
of 7.5

~ oy . . . .
Eduardo Banados , Bram P. Venemans, Chiara Mazzucchelli, Emanuele P. Farina, Fabian Walter,
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Previous record holder: Mortlock (2011) quasar,
with a black hole mass of #2x109 M, SMBH at z~7.1

At these redshifts, the Universe is less than 1 Gyr old....
Problem: How do you form a ~10% My SMBH in that time?



How to form a

supermassive
black hole...

Promising seeds:

* Direct collapse black hole

* Very massive or even
supermassive stars
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Cosmic Reionization

Intergalactic medium
A Schematic Outline of the Cosmic History
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- Black: Neutral hydrogen
Cosmlc Blue: lonized hydrogen

White

rEionization Yellow: Galaxies

Simulation credit: Marcelo Alvarez (CITA), Tom Abel (Stanford)
Visualization credit: Marcelo Alvarez, Ralf Kaehler (Stanford), Tom Abel






PART II: HOW TO FIND THEM

* Photometry vs spectroscopy

* Selection tec
* Surveys: Dee

nniques: Dropouts, Lya

o fields and gravitational lensing

* Telescopes: Today and tomorrrow

&




Imaging at high redshift

This is what a galaxy
may look like to a

low-redshift
astronomer....

This is what a good(!) image of a galaxy at the
. highest redshifts typically looks like...

Note: Not to scale (would be about the size of
L one othe smallest dots in the upper image)
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Spectroscopy at high redshift
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Observed Wavelength (A)

This is what the spectrum
of a low-redshift galaxy
typically looks like (S/N>30)
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Observed frequency [GHz]

This is what a superb(!)
spectrum of a
high-redshift looks

like (good enough for
publication in Nature!)



Some common optical & near-IR filters...
Most relevant for high-z: I(i)zYJHK

ESO/EIS:
WFI + SOFI

Johnson—Cousins-Glass

I||II|I|||||I||||
6000 8000

MA)




Very common units in high-redshift astronomy:
1Jy=Jy=102*WHz*m2=102ergs?*Hz*cm™
Apparent AB magnitude at frequency v
(a.k.a. monochromatic AB magnitude)

Difference between apparent and absolute magnitude:

D
My — M g = 5Iog10LOF;C} —2.5log,,(1+2)

D, : Luminosity distance (depends on z and cosmological parameters)
Can be calculated by many on-line cosmology calculators!



Age of the Universe (Myr)
900 600 500

This work, SPT0615-JD A Frontier Fields
RELICS (Salmon+17) v Ultra-VISTA
RELICS SPT0615-57 z< 8 CANDELS
CLASH

Photometric high-z [# ciiie
galaxy candidates %" . Fors |
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Intrinsic mags
by de-lensing
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11
Redshift 7 Salmon+a17

* Emission-line spectroscopy at 8-10 m telescopes
possible for m,;<27 mag

* The upcoming JWST can do imaging/photometry at
m ,z<31 mag and spectroscopy at m,;<28 mag

e Currently known quasars at z=7 are at m,. = 20-21 ma
AB




The Hubble Extreme Deep Field

Total exposure time: 23 days
(2 million seconds)

. 2.3arcmin X2 aremin
3 < oo -a Wi ‘_"'_9 g - T yot
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Gravitational Lensing:
A great tool for hunting-down
galaxies at the high-redshift frontier!
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e Background

galaxy

Sub-mm maps (contours)
of lensed systems overlaid
on HST images

If the lens is a single galaxy,
the image separation is ~1”

HST F160W :I}:IST F110W 2




Magnificationmap
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Galaxies can attain magnification of up to =100 — smaller objects
(e.g. Population Il star clusters) can in principle reach even higher !



. Magnification
v U =10
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Good: Background sources appear brighter by a factor p

A magnification of u=10 makes the object 2.5 mag brighter!

Bad: The background volume probed becomes smaller by a factor p
Bottom line: Lensed survey fields can be superior for sources that
are very faint, not too rare and not too highly clustered .




Most distant astronomical objects with spectroscopic redshift determinations

Redshift | Gigalightyears. Light travel distance®

Name Type Notes
(2) (Gly)"! P
GN-z11 z=11.09|13.39 Galaxy Confirmed galaxy®!
MACS1149-JD1 z=9.11 | 13.26 Galaxy Confirmed galaxy™
EGSY8p7 z=868 |13.23 Galaxy Confirmed galaxy!*!
A2744 YD4 z=8.38 [13.20 Galaxy Confirmed galaxy™®
GRB 090423 z=82 [13.18 Gamma-ray burst | P11

EGS-zs8-1 z=773 |13.13 Galaxy Confirmed galaxy'®




Two techniques:

* Dropout selection

* Crude redshift estimator (Az=1.0)
* But works well for all high-z, star-forming galaxies

* Lyman-alpha surveys
* High-precision redshift estimation (Az=0.1)

* But doesn't work well at z>6
* And not all galaxies are Lya-emitters




No emission
lines

High-z galaxy with active High-z galaxy
star formation with no star formation

Note: All high-z galaxies are quite young — you can't
have old galaxies in an young Universe



- Absorbed by the neutral
interstellar medium
within the galaxy

Lyman break
(912 A)




Z=0 Z>2.5
B-V ~ normal
\ 1A y  U: extremely faint

A/I_yman break

Flux Flux

—— -

U U(B V

N [

Wavelength Wavelength






At even higher z,
neutral gasin
the IGM start

to absorb
everything

shortward of Lya
(rest A=1216 A)




Eventually, the break shifts into the near-
IR. Example: z-band dropout (z=6.5)




Intermission:
Which of these drop-out candidates is
likely to have the highest redshift?




* Potentially the brightest line in rest frame UV/optical

* Two narrowband images (covering continuum and
line) required for survey of redshift range (Az~0.1)

Sharp drop
(absorption
in neutral
IGM)

Lyman-a at z=7



Problem |: Lyman-oa notoriously
difficult to predict

* Lyo resonant line —
random walk through
neutral interstellar
medium

* Many Lya photons
destroyed by dust before
emerging

* Lya flux ranges from low
to very high




Abrupt drop —
Lya not good
way to find z>6

galaxies
(but may be good
. way to probe
R — Prasrae il reionization)
redshift
Fraction of Hayes et al. 11
Lya. photons

reaching the
observer



* Estimate the galaxy type (morphological) and assume that the
galaxy is identical to some template (often an average over
many galaxy spectra of similar type)

\ Measured
Flux photometrical
data points
Wavelength
Z=0 Redshifted
template spectrum template spectrum
A (bad match) 4 (good match)
Flux Flux | ----- > / \
~

Wavelength Wavelength



Telescopes: Today
Commonly used in high-z studies:

* Near-IR: 8-10 m telescopes on the ground
Hubble space telescope

* Mid-IR: Spitzer space telescope (retired)
* mm/sub-mm: ALMA, NOEMA

*X-rays: Chandra X-ray observatory




8-10m groundbased telescopes
Suitable for high-z studies:

*Large Binocular Telescope, 8.4m x 2 (Arizona)
*Hobby-Eberly Telescope, 20m (Texas)

e Keck, 20m (Hawaii)

*Subaru, 8.2m (Hawaii)

*Very Large Telescope, 8.2m (Chile)

*Gemini, 8.2m (Hawaii)
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Stark+17
Main use at z>6:

* Spectroscopy to detect rest- frame UV emission lines (Lyo. @ 1216 A,
Hell @ 1640 A, Olll] @ 1606 A, CllI] @ 1907, 1909 A, CIV @ 1548 A)
— Redshift + diagnostics on mterstellar medium and ionizing flux

* Photometry — Photometric redshift, strength/slope of UV
continuum



2.4 m UV/optical/near-IR
telescope

Resolution ~ 0.05 arcec
Field of view =~ 2 arcmin

Main use at the highest redshifts:

Extremely deep near-IR images at
excellent resolution (0.05 arcsec)
— Detecting very faint sources,
finding dropouts, studying object
morphology




Atacama Large Millimeter/
submillimeter Array: An array

of seventy 12-m antennas

- operating @ 200-10000 pum

in Chile

NOEMA: Somewhat similar
array in the northern hemisphere

Main use at high z:

. Searching for dust

" continuum emission and

- emission lines like: [ClI]@158 pm,
= [Olll] @88 pm.

R - Resolution: ~0.1 arcsec

SRH AT '  Field of view: ~ 10 arcsec



Chandra X-ray observatory

*Detects x-rays (1-100 A; 1074-102 micron)
*Resolution: =0.5 arcsec

*Field of view: 30 arcmin

*Main use at high z: Finding signatures of black
hole accretion (e.g. high-z quasars - but note
that all quasars are not detectable in x-rays)




Telescopes: Tomorrow

* Near-IR from the ground:

GMT, TM1

CELT

* Near/mid-IR from space:

JWST, Euc

* X-rays: At

id WFIRST

nena, Lynx



GMT, TMT, ELT

* Giant Magellan Telescope (Chile, 25m, 2029)

* Thirty-Meter Telescope (Hawaii, 30m, 2027?)
* Extremely Large Telescope (Chile, 39m, 2025)

* Main use at high redshift: Spectroscopy of high-z
objects in the near-IR, at very high angular resolution
(~0.01 arcsec)




'The first light machine’

6.5 m mirror, near/mid-IR
Launch: 2021
Unprecedented IR sensitivity
and the only upcoming
telescope to allow deep

~ observations at 3-8 micron

" Main use at high z:

Deep photometry (down to
31 AB mag) and spectroscopy
for galaxies up to z = 15;
searching for extreme-z exotica




Euclid & WFIRST:

Near-IR survey telescopes

* Euclid (ESA, 1.2m, 2022): Near-IR, field of view 0.53 deg?,
photometric limit m ;=26 AB mag
Use at high z: Finding bright quasars at z<g

* WFIRST (NASA, 2.4m, 2025?): Near-IR, field of view 0.28 deg?,
photometric limit m ;=28 AB mag
Use at high z: Finding rare types of objects as targets for
GMT/TMT/ELT, surveying Lyo.-emitters

WFIRST




Athena & Lynx: X-ray telescopes

* Athena (ESA, 1.4m?, 2031): 5-10 arcsec resolution,
0.44deg? field of view
Use at high z: Finding quasars up to z=10

* Lynx X-ray Observatory (NASA, 2m?, 20367?): 0.5 arcsec
resolution, 0.13 deg? field of view

Use at high z: mini-quasars (black hole mass
down to ~104 M) at z=7-10

Athena




