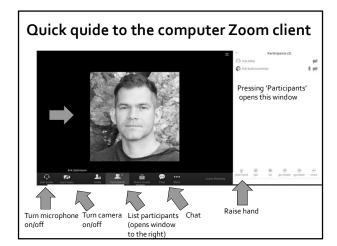
Physics of Galaxies 2020 Course introduction

Outline for today

Formal Stuff:

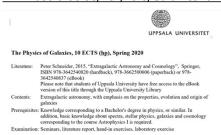
- Introduction to Zoom
- Course format
- Course literature
- Schedule
- Examination



Zoom

Important features to master:

- Turning your microphone and camera on/off
- Use 'raise hand' symbol
- Use chat
- Share screen (computer only?)
- Share file/content


Using Zoom on a <u>computer</u> is the recommended way! And downloading the Zoom app is better than joining through a browser (not all browsers seem to be equally well-supported).

Course homepage

• Link:

www.astro.uu.se/~ez/kurs/Galaxies20.html

Course format 2020

- No full-scale Zoom lectures (too tediuous) you should instead study the text book + lecture slides (largely from previous years) prior to each Zoom lecture session
- Lecture sessions (1 hour each) will be for Q&A and for covering the most difficult/important parts of the slides
- Note: This is all quite experimental we may have to alter the format along the way if it doesn't work out

Digital quizzes coupled to each lecture session

- 8 quizzes for smartphone, computer or tablet
- Quizzes open as soon as I have time to design them
- Quizzes cover both textbook material and slides
- Deadline 48 hours after each session
- · Infinite attempts until the deadline

Example from the pre-knowledge quiz (does not yield bonus points) The current value of the Hubble parameter is believed to be				
70 kpc/s/km	70 km/s/Mpc	70 km/s	70 km/Gpc	100 km/s

Bonus points from quizzes

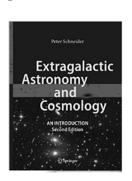
- 100% correct answers (no matter how many attempts it takes to get this) in a quiz → 0.5 bonus points added to hand-in exercise at the end of the course
- From 8 quizzes, you can get up to 4 bonus points
- The quizizz.com platform displays in-game points based on speed, but these are not relevant in this course
- Quiz scores are logged automatically when you complete a quiz – I can access these from an administratior page

Digital quizzes

https://join.quizizz.com
Game code: Different for every
quiz. Check schedule for codes!

Important: You have to use your real name (not an alias) if you want bonus points.

An asterisk (*) is automatically added to your name after each new attempt


Course literature

Extragalactic Astronomy and Cosmology

Peter Schneider 2014/2015, Springer Hardback: ISBN 978-3-642-54082-0 eBook: ISBN 978-3-642-54083-7

Around 700-800 SEK

Note: E-version available from UU library (for free)

Examination

- Two exercise sessions
- Hand-in exercises (quizzes boost score)
- Three seminars
- One database exercise
- Written essay (minimum 3 pages) + oral presentation (10 minutes)

No written test!

Exercise sessions

• Session 1: April 23, 10:15-12:00

• Session 2: May 12, 15:15-17:00

• **Objective:** Solve problems *together* in small groups over Zoom (I sure hope this works!)

Exercise sessions

- Preparation:
 - •Study exercises and solutions (posted on course homepage) before each session
 - Have pen, paper, calculator/computer, my solved exercises and textbook handy
- Grade: Pass/Fail

No-show or not actively participating \rightarrow Need to complete more hand-in exercises

Exercises and solutions on the course homepage

Make sure you understand the solutions before exercise sessions 1 & II!

The problems we solve in the exercise sessions will be similar.

Hand-in exercises

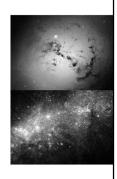
- 3 exercises downloadable from the course homepage
- Submit by email Deadline: June 3
- •Grade: Fail, 3, 4, 5
- •Collaboration OK, but please don't turn in identical solutions!

Physics of Galaxies Hand-in exercises 2020

Note: If you didn't actively participate in the exercise sessions, you need to hand in additional exercises - please contact me if this situation should arise

Literature exercise

- Choose subject individually (should go well beyond treatment in textbook/slides, if covered by these)
- Find suitable articles
 - Published papers (ADS abstract service) http://adsabs.harvard.edu/abstract_service.html Preprints: http://www.arxiv.org
- Written report (≥ 3 pages), deadline May 18 • **Grade**: Fail, 3, 4, 5
- Oral presentation (≈ 10 minutes), May 28, 29 • Grade: Fail, 3, 4, 5



Required format of written report

- Abstract
- Introduction
- Main text (with references)
- •Reference list
 - Should be mostly research or review papers
 - Please avoid using the textbook, popular science papers or homepages as references Exception: Links to project pages of upcoming telescopes, surveys etc. may be necessary if there is no proper paper out yet

Suggested topics

- The first stars
- 21 cm cosmology
- Origin of supermassive black holes
- Ultrafaint dwarfs
- Extragalactic background radiation
- Galactic archeology
- Conditions for life on galactic scales
- Science cases of future telescopes
 - James Webb Space Telescope
 - The Extremely Large Telescope
 - Square Kilometer Array

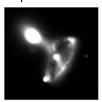
But please feel free to suggest other topics!

Seminars

- Small "simulations" of what working as a scientist is really like
- Three seminars:
 - 1. Three groups (join one!): May 13,14,15
 - 2. May 19
 - 3. Three groups (join one!): May 20, 25, 26

Soft Soft Tough!

Instructions available from course homepage!



Seminars

- •Purpose:
 - Practice finding and reading relevant research papers
 - Practice critical thinking
 - Practice analyzing astronomical data
 - Practice scientific creativity
 - Practice communication skills
 - •Practice working in a team
- •What if you cannot attend the seminars?
 - Have to hand in written report instead
 - $(\rightarrow more work!)$

Seminar I: Strange galaxy

- •Grade: Pass/fail
- •Puzzle-solving game aiming to teach you about observational techniques and observing strategies in extragalactic astronomy
- Preparation: Read section 1.3-1.4 in textbook

Seminar I: Strange Galaxy

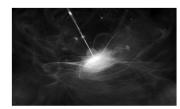
Seminar II:

An amazing discovery / Crackpot?

- •Grade: Pass/fail
- Role-playing exercise
- Preparation:
 - Study the two scenarios in the instructions
 - Read the material available in the student portal

Seminar II: An amazing discovery / Crackpot?

Seminar III: The most distant galaxies


- •Grade: Fail, 3, 4, 5
- Preparation:
 - Read suggested papers + others
 - Answer questions + analyze dataset
 - Prepare to present answers and results in class

Seminar III: The most distant galaxies

- Practice reading technical research papers (as opposed to popular articles, review papers or textbooks). As a professional astronomer, most of the stuff you will read is likely to be of

Database exercise ("lab")

- Introduction to exercise in lecture session 6
- Complete individually and hand in report no later than June 5
- Grade: Fail, 3, 4, 5

Grades

- Final grade will be the mean grade from:
 - Seminar 3
 - Written report on literature exercise
 - Oral presentation of literature exercise
 - Report from database exercise
 - Hand-in exercises
- No final grade will be computed until you have a reached a passing grade (3 or higher) for each of these
- Please note that you also need a passing grade from the two exercise sessions and seminar 1 & 2 to complete the course

Grades – example

- 1) Seminar 3 Grade: 4
- Written report on literature exercise Grade: 4
- Gral presentation on literature exercise Grade: 3
- 4) Report on computer exercise Grade: 5
- 5) Hand-in exercises Grade: 3

Calculate mean grade: $(4+4+3+5+3)/5 = 3.8 \approx 4$ Final grade: 4:

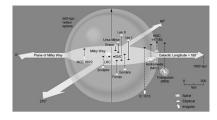
Pro tip

Note: There is a gap in the schedule between April 1 and April 20

Friendly advice: Decide on a topic for the literature exercise early and use this time to work on the written report – otherwise things will become very hectic in late May

Course Outline

- •Lecture 1:
 - Introduction
 - Historical Background
 - Galaxy Classification
 - •The Cosmological Framework



Course Outline

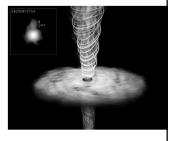
- •Lecture 2:
 - •The Astronomical Distance Scale
 - •The Milky Way
 - •The Local Group

Course Outline

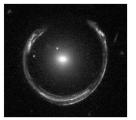
- •Lecture 3:
 - •Dark matter in galaxies
 - •The dark halo
 - Subhalos
 - •Mass-to-light ratios
 - Baryon fractions

Course Outline

- •Lecture 4:
 - Disk galaxies
 - Elliptical galaxies


Course Outline

- •Lecture 5:
 - Star formation
 - Population synthesis
 - Galaxy spectra
 - The interstellar medium
 - The cosmic star formation history


Course Outline

- •Lecture 6:
 - Black holes
 - Active galaxies:
 - Quasars
 - Blazars
 - Seyfert Galaxies
 - Radio Galaxies
 - •Introduction to database exercise

Course Outline

- •Lecture 7:
 - Galaxy groups
 - Galaxy clusters
- Gravitational lensing

Course Outline

- •Lecture 8:
 - •The high-redshift Universe
 - •Cosmic reionization
 - •The first stars and galaxies

