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AbstractSmooth density pro�les of galaxy halos has succesfully been used tomodel gravitational lensing systems. There are indications that dark mat-ter halos contain substructure. In this paper the e�ects of substructurein a smooth host halo are explored by numerical simulations. The ba-sic theory of gravitational lensing is reviewed and a model for compoundgravitational lensing is presented. The e�ects of di�erent forms and dis-tributions of substructure are investigated. The results were found to bein agreement with previous simulations except for those for the largestsubhalos. An example of secondary images caused by the presence of sub-structure is also presented. Furtermore the reliability of the method andthe sensitivity to the simulation parameters are discussed.
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1 IntroductionThe sky is full of bright stars, but these luminous objects are supposed to makeup only a small part of the universe. Most of the universe consists of darkmatter. Dark matter does not emit any radiation and is therefore not visible.The luminous matter in galaxies is supposed to be surrounded by a halo of darkmatter. The nature of dark matter halos will be of interest in this paper.Even though dark matter does not radiate it can still be detected. Darkmatter reveals itself by the gravitational force it exerts. One of the consequencesof Einstein's theory of general relativity is that light is bent by mass. Thegravitational �eld of a de
ecting mass, called the gravitational lens, can focusthe light of a source and give rise to multiple images of it. These images canbe magni�ed or demagni�ed relative to the source. This is called gravitationallensing. Gravitational lensing is a powerful tool for testing di�erent models ofdark matter.Smooth density pro�les have been successfully used to model gravitationallenses. There are however indications that the galactic halos are more complexthan these models. For some gravitational lensing systems the smooth modelshave been able to predict the image positions, but failed to explain the observed
ux ratios of the images [1]. Substructure within the halos might be a solutionto this problem.Another important reason to study the e�ects of halo substructure is theso called \small scale crisis" [2]. According to numerical simulations, based onthe cold dark matter (CDM) scenario for structure formation, galaxies shouldresemble scaled down versions of galaxy clusters. The simulations predict theexistence of several hundred subclumps within the Milky Way halo, but only adozen have been observed.In this paper gravitational lensing with halo substructure will be investigatedby numerical simulations. Compound gravitational lensing has recently beenstudied by Metcalf and Madau [3]. They used a smooth host halo with a fewpercent of the mass contained in subhalos. They claimed that this substructurea�ect the magni�cation ratios appreciably while the image positions are almostthe same. One of the purposes of this paper is to try to reproduce the resultsof Metcalf and Madau.The outline of the paper is the following. First the basic framework of grav-itational lensing and models for the host halo and substructure is presented.After that follows a description of a method to do numerical simulations ofcompound gravitational lensing. Finally the results of the simulations are pre-sented and discussed.2 TheoryIn this section the theory needed to model a compound gravitational lensingsystem is presented. The theory is taken from the references [4] and [5].4



� -Ds� -Dd � -DdsO Lq 6���������������������Iq qS� � � � � � � � � � q�̂� �Figure 1: A general gravitational lensing system. The center of the lens is at L. The line troughL and the observer O serve as a reference line and is called the \optical axis". Relative to theoptical axis, the source S has an undisturbed angular position �. A light ray SO from the source isde
ected by an angle �̂, so that the image I is observed at the position �. The distances from theobserver to the lens and the source are Dd and Ds respectively. Dds denotes the distance from thelens to the source.2.1 General gravitational lenses2.1.1 Derivation of the lens equationIn �gure 1 a general lensing system is depicted. The system consists of a source,a gravitational lens and an observer. The source S and the lens L both lie onspheres centered on the observer O. The radii of the source and lens spheresare Ds and Dd respectively. The de
ection angle of the light is in all casesof astrophysical interest so small, that the spheres can be approximated withtheir tangent planes. The planes corresponding to source and lens spheres arecalled source plane and lens plane respectively. From the geometry of �gure 1, arelation between the angular position ~� of the unlensed source and the angularposition ~� = ~�=Dd of the image can be derived:~� = ~� � DdsDs ~̂� (1)where ~̂� is the de
ection angle of the light ray. This is the so{called lens equa-tion. It can be rewritten in terms of the physical vectors ~� = Ds~� and ~� in thesource and lens plane respectively:~� = DsDd ~� �Dds ~̂�(~�) (2)5



The thickness of the lens is typically much smaller than the distances Ds andDd. The lens can therefore be approximated by a thin screen in the lens plane.The mass distribution �(~�; z) of the lens can then be projected along the line{of{sight (i.e. the z{axis) and be replaced by a mass sheet orthogonal to the lineof sight. This mass sheet is characterized by its surface mass density:�(~�) = Z 1�1 �(~�; z)dz (3)The de
ection angle caused by a point with mass m located at ~�0 is:~̂�(~�) = 4Gmc2 ~� � ~�0j~� � ~�0j2 (4)where G is Newtons gravitational constant and c is the speed of light. For anextended matter distribution the de
ection angle is given by the sum of thede
ections due to all mass elements in the lens plane:~̂�(~�) = 4Gc2 ZR2 d2�0�(~�0) ~� � ~�0j~� � ~�0j2 (5)2.1.2 The scaled lens equationIt is useful to rewrite the lens equation (2) and the surface mass density (3)in dimensionless form. To do this �rst one de�nes a length scale �0 in the lensplane and a corresponding length scale �0 = �0Ds=Dd in the source plane. Thenone de�nes the dimensionless vectors:~x = ~��0 ; ~y = ~��0 (6)as well as the dimensionless surface mass density:�(~x) = �(�0~x)�cr (7)where the critical surface density �cr is de�ned as:�cr = c2Ds4�GDdDds (8)The lens equation (2) can then, with the help of equations (6) and (7), be writtenin the dimesionless form: ~y = ~x� ~�(~x) (9)where: ~�(~x) = 1� ZR2 d2x0�(~x0) ~x� ~x0j~x� ~x0j2 = DdDds�0Ds ~̂�(�0~x) (10)6



2.1.3 The de
ection potentialThe identity r ln j~xj = ~xj~xj2 shows that the de
ection angle (10) can be writtenas the gradient of a potential  (~x):~�(~x) = r (~x) (11)where:  (~x) = 1� ZR2 d2x0�(~x0) ln j~x� ~x0j (12)The relation (12) giving  in terms of � can be inverted via the identityr2 ln(~x) = 2��2(~x) to give Poisson's equation:r2 (~x) = 2�(~x) (13)2.1.4 The magni�cation factorGravitational light de
ection can magnify or demagnify the images of a source.The di�erential de
ection across a light bundle a�ects the properties of theimages. Since surface brightness is conserved, the 
ux of an image is determinedby this area distortion. Consider an in�nitesimal source with surface brightnessI� , where � is the observed frequency. In the absence of gravitational lightde
ection this source subtends a solid angle d!� on the sky. The monocromatic
ux from this source is: S�� = I�d!� (14)If the light bundle undergoes de
ection the solid angle of the image d! willdi�er from d!�. Since the light bending a�ects neither � nor I� the observed
ux from the image is: S� = I�d! (15)the light de
ection leads to a change of the observed 
ux by a factor:j�j = S�S�� = d!d!� (16)j�j is called the magni�cation factor. The solid angles can be expressed as d! =d2�=D2d and d!� = d2�=D2s . The magni�cation factor can then be rewritten as:j�j = d2�d2� �DsDd�2 (17)If the scaled vectors (6) are used equation (17) becomes:j�j = d2xd2y (18)7



It is thus seen that the magni�action factor j�j can be obtained from the Jaco-bian determinant, which describes the area distortion of the lens mapping (9).If the Jacobian matrix for the lens mappig is de�ned as:A(~x) = @~y@~x (19)then the magni�cation factor can consequently be de�ned as:�(~x) = 1detA(~x) (20)Equation (19) and equation (11) imply that:Aij = �ij �  ij (21)where the partial derivatives of the scalar function  with respect to xi aredenoted by the subscripts i.2.1.5 The angular diameter distanceDistances in the universe are not directly observable. The distances used in theformulas depend on the choice of cosmology. In this paper an Einstein{de Sitteruniverse, corresponding to 
 = 1, is assumed. The angular diameter distanceD can be written as: D = cH0 r(z) (22)where H0 is the Hubble constant and r(z) is the \dimensionless Dyer{Roederdistance". The distance r(z) dependens on the observable redshift z. Theexplicit solution to the Dyer{Roeder equation for an Einstein{de Sitter universeis: r(z) = (1 + z)� � (1 + z)��2�(1 + z)5=4 (23)where � = p25� 24~� depends of the clumpiness parameter ~�. Throughout thispaper the background cosmology is supposed to be smooth, corresponding to~� = 1.2.2 Axially symmetric lensesIn the case of axisymmetric lenses, �(~�) = �(j~�j), the formulas above becomeparticularly simple. The notation x = j~xj is used below. The de
ection angle(10) for an axisymmetric lens is:~�(~x) = m(x)x x̂ (24)where: 8



m(x) = Z x0 x0dx0�(x0) (25)The de
ection potential (12) for an axially symmetric mass distribution is: (x) = 2 Z x0 x0dx0�(x0) ln� xx0� (26)2.2.1 The singular isothermal sphereA mass distribution often used to model gravitational lenses is the SingularIsothermal Sphere (SIS). The density pro�le of the SIS is:�(r) = �22�Gr2 (27)where � is the line{of{sight velocity dispersion and r is the distance from thecore. The corresponding surface mass density is obtained by equation (3):�(~�) = �22�G Z 1�1 1�2 + z2 dz = �22�G �1� arctan z� �1�1 = �22G� (28)where � = j~�j. The natural length scale for a SIS is:�0 = 4���c �2DdDdsDs (29)With this length scale the dimensionless surface mass density, de�ned by equa-tion (7), becomes: �(x) = 12x (30)The de
ection angle (24) for a SIS is ~�(~x) = ~xx . The lens equation is thus:~y = ~x� ~xx (31)The de
ection potential (26) for a SIS is  (~x) = x . Together with equation(21) this give the Jacobian matrix:A(~x) =  1� x22x3 x1x2x3x1x2x3 1� x21x3 ! (32)This implies that detA(~x) = 1� 1x which in turn implies that the magni�cationfactor is: � = xx� 1 (33)9



2.3 The substructure model2.3.1 Mass and radius of the substructureMetcalf and Madau model a compound lens as a smooth host halo with subhalos.The substructure is only realized in a simulation region where it will make upa fraction f� of the mass of the host halo. The host halo is modeled as a SISand the subhalos are modeled as truncated SIS. The masses and radii of thesubclumps, as given in [3], are:m(�;R) = 2R�3p3G�halo and r(�;R) = R�p3�halo (34)where R is the distance from the center of the host halo and �halo is the velocitydispersion of the host halo. � is the velocity dispersion of the subclump. Thetruncation radius and the mass of the sphere are related to each other. Thetruncation radius r(�;R) is given by:m(�;R) = ZR3 �(r)r2drd
 = 2�2G Z r(�;R)0 dr = 2�2G r(�;R) (35)The properties of the subhalos can therefore equally well be described bym(�;R)or r(�;R).2.3.2 The de
ection angle for a truncated SISThe truncated singular isothermal sphere has the following mass density ex-pressed in spherical coordinates (r; �; �):�(r) = � �22�G 1r2 if r < r(�;R)0 if r > r(�;R) (36)When projecting upon the line{of{sight, cylindrical coordinates (�; �; z) is abetter choice: �(�; z) = ( �22�G 1�2+z2 if �2 + z2 < r2(�;R)0 if �2 + z2 > r2(�;R) (37)The surface mass density, given by equation (3), is:�(�) = Z pr2(�;R)��2�pr2(�;R)��2 �22�G 1�2 + z2 dz (38)The integrand of (38) is even, which can be used to simplify the integral. If thecoordinates are changed to y = z=� the integral can be simpli�ed even more:�(�) = �2�G� Z q� r(�;R)� �2�10 11 + y2 dy = �2�G� arctan0@s�r(�;R)� �2 � 11A(39)10



The dimensionless surface mass density can be calculated with the use of equa-tion (7) and the length scale (29):�(x) = 1�x arctan0@s�r(�;R)�0x �2 � 11A (40)where x = j~xj as before. The truncated SIS is axially symmetric so the de
ectionangle can be calculated by using equation (24).m(x) = 2� Z x0 arctan0@s�r(�;R)�0x0 �2 � 11A dx0 (41)If the variable s = r(�;R)�0x0 is used, then the integral (41) adopts a simpler form:m(s) = 2� r(�;R)�0 Z 1r(�;R)�0x 1s2 arctan ps2 � 1s ! ds, m(s) = 2� r(�;R)�0 "ps2 � 1s � arctan(ps2 � 1)s #1r(�;R)�0x (42)Since lims!1 �ps2�1s � arctan(ps2�1)s � = 1, the upper limit in (42) gives2r(�;R)=��0. The lower limit gives rise to two di�erent expressions dependingon whether x�0 is larger or smaller than the radius of the subclump r(�;R).Since all of the surface matter density of the subclumps is contained insidea disc with radius r(�;R), the integrand vanishes for x�0 > r(�;R). Whenr(�;R)=x�0 < 1 equation (42) therefore implies:m(x) = 2� r(�;R)�0 (43)When r(�;R)=x�0 > 1 equation (42) instead gives:m(x) = 2�x0@r(�;R)�0x �s�r(�;R)�0x �2 � 1 + arctan0@s�r(�;R)�0x �2 � 11A1A(44)In the simulations it is necessary to use one length scale for truncated SISwith di�erent velocity dispersion. This length scale is chosen to be the one cor-responding to the largest subhalo, �0(�max). �0(�) is the natural length scale(29) for the SIS. The de
ection angle caused by smaller subhalos is thereforemultiplied with a factor �0(�)=�0(�max) = �2=�2max. It is also convenient to in-troduce a = r(�;R)=�0(�max)x where x is de�ned by equation (6) for �0(�max).If the distance x is meassured in units of �0(�max), then r(�;R)=�0(�)x0 =11



r(�;R)=�0(�max)x, where the primed x denotes the distance meassured in termsof �0(�).Finally the de
ection angle (24) caused by a truncated SIS is given by:~�(~x) = x̂2� � ��max�2� a�pa2 � 1 + arctan(pa2 � 1) if a > 1a if a > 1 (45)2.3.3 The de
ection angle for a pointlike object with mass m(�;R)The de
ection angles for a truncated SIS and a point mass are identical whena < 1. This will be shown below. The surface mass density of a point with massM is given by �(~�) = M�2(~�). According to the de�nition (7) the dimensionlesssurface density for a point mass is:�(~x) = M�2(�0~x)�cr (46)The identities �2(~x) = �(x1)�(x2) and �(ax) = 1jaj�(x) can be used to rewritethe two{dimensional delta{function as �2(�0~x) = �2(~x)=�20 . If M = m(�;R) =2�2G r(�;R) and the de�nition (8) of �cr is inserted into equation (46), the fol-lowing equation is obtained:�(~x) = 2r(�;R)�20 4��2DdDdsc2Ds �2(~x) (47)In this equation one can identify the length scale (29) for a SIS. This lengthscale is related to the subclump mass. If �0(�max) is chosen as the length scalefor the distances, then the dimensionless surface density is:�(~x) = 2r(�;R)�0(�)�20(�max) �2(~x) = � ��max�2 2r(�;R)�0(�max)�2(~x) (48)The de
ection angle can then be calculated by equation (10):~�(~x) = 2� � ��max�2 r(�;R)�0(�max) ZR2 d2x0�2(~x0) ~x� ~x0j~x� ~x0j2, ~�(~x) = 2� � ��max�2 r(�;R)�0(�max) ~xj~xj2 = 2� � ��max�2 ax̂ (49)This is the same expression as for the truncated SIS with a < 1. Thus, outside atruncated SIS the de
ection angle is the same as for a pointlike object with thesame mass. This equality will later be used in the simulation. The correspondingde
ection potential, given by equation (12), is: (~x) = 2� � ��max�2 r(�;R)�0(�max) ZR2 d2x0�2(~x0) ln j~x� ~x0j12



,  (~x) = 2� � ��max�2 r(�;R)�0(�max) ln j~xj (50)3 Documentation of the simulationThe method used for simulating compound gravitational lensing is essentiallythe same as the one Metcalf and Madau used in their paper.First, models are chosen for the host halo and the substructure. Second,a random con�guration of substructure is created. Then the de
ection anglecaused by the substructure is calculated on a grid in the lens plane. Thereafterthe lens equation is used to decide which gridpoints in the lens plane correspondto a given source. This information is then used to calculate the magni�cationof each image of the source.A singular isothermal sphere is used to model the host halo. The subhalosare modelled as truncated singular isothermal spheres. A useful property of thetruncated SIS is that outside the radius of the sphere the de
ection angle isthe same as for a point mass. The de
ection angles caused by the substructurecan in principle be calculated by superposition of the de
ection angles causedby each subclump. Since the number of subhalos and the number of gridpointsare both large, such a calculation would be quite time{consuming. A fasterway to calculate the de
ection angles is therefore desired. Outside the radiusof the subclump the contribution to the de
ection angle can be treated as if itoriginated from a point mass. The calculation of the de
ection angles causedby the substructure is therefore carried out in two steps. First all subclumpsare treated as point masses. At a second stage a re�ned calculation is carriedout in the neighbourhood of each clump.The simulation was written in the programming language FORTRAN77 [7].3.1 The lensing equation used in the simulationThe simulation region covers only a small part of the area of the host halo inthe lens plane. This makes it necessary to treat the contributions from thehalo outside the simulation region in some way. The method used by Metcalfand Madau is presented below. The fraction of the host halo that consists ofsubstructure is denoted f�. If this fraction of substructure is considered only inthe simulation region, then the surface density of the host halo can be written:�halo(~x0) = � �smooth(~x0) outside simulation region[1� f�(~x0)]�smooth(~x0) inside simulation region (51)where ~x0 is the center of the simulation region and f� is supposed not to changewithin the simulation region. In addition the host halo is supposed to be smooth.According to the principle of linear superposition, the small de
ection anglesadd. The lensing equation inside the simulation region can thus be written:13



~y0 = ~x0 � ~�0halo(~x0)� ~�0sub(~x0) (52)It is convienient to let the center of the simulation region and the image of thesmooth macro lens coincide. In the absence of substructure the image appearsat ~x0 and the lensing equation is:~y0 = ~x0 � ~�smooth(~x0) (53)Inserting equation (53) into equation (52) and changing coordinates to ~x =~x0 � ~x0 and ~y = ~y0 � ~y0 will give:~y = ~x� ~�halo(~x+ ~x0) + ~�smooth(~x0)� ~�sub(~x+ ~x0) (54)It is desirable to have an expression whitout ~�halo(~x). If the surface densityinside the simulation region can be approximated as constant, then the followingapproximation can be made:�smooth(~x0) � �halo(~x0) = f��smooth(~x0) � f��smooth(~x0) (55)After adding and subtracting �smooth(~x+ ~x0) to equation (54) and rearrangingthe terms, the following equation is obtained:~y = ~x+ ~�smooth(~x+ ~x0) � ~�halo(~x+ ~x0)++~�smooth(~x0)� ~�smooth(~x+ ~x0)� ~�sub(~x+ ~x0) (56)A relation between the surface density and the de
ection angle can be obtainedby integration of Poisson's equation (13):~�smooth(~x+ ~x0)� ~�halo(~x+ ~x0) = Z (�smooth(~x+ ~x0)� �halo(~x+ ~x0))d~x (57)The approximation (55) and equation (57) give:~�smooth(~x+ ~x0) � ~�halo(~x + ~x0) � f�(~x0)�smooth(~x0)~x (58)If equation (58) is inserted into equation (56), the �nal lens equation for thesimulation region is obtained:~y = ~x� ~�smooth(~x + ~x0) + ~�smooth(~x0) + f��smooth(~x0)~x� ~�sub(~x+ ~x0) (59)14



3.2 The grid setupThe simulation region is smaller than the projection of the halo upon the lensplane. Especially the image separation is larger than this region. Therefore,whenever the smoothmodel of the host halo predicts more than one image, theseare treated separately. A square grid centered at ~x0 is used to approximate thesimulation region and the length scale used is (29) with � = �max inserted. If thenumber of grid points along each side of the grid is N and the gridspacing is �x,then the physical area of the simulation grid is: Agrid = ((N � 1)�x�0(�max))2.The number of grid points and the length scale are kept �xed for a given massrange of substructure. The grid spacing is then used to adjust the area of thegrid, so that it �ts the subtructure con�gurations. In the simulations a 2572grid is used.3.3 The substructure setup3.3.1 The probability distributionThe subhalos are described by their mass distributions and coordinates in thelens plane. The truncated SIS used by Metcalf and Madau are described by thevelocity dispersion � and the distance to the center of the host halo R. Thesubclump radii and masses are functions of these two parameters and are givenby equation (34). The number of satellites is supposed to be inversely propor-tional to the mass squared, dN=dm / m�2. What is then the correspondingprobability distribution? Since the mass of a subhalo is a function of �, theprobability distribution P (�) is needed rather than P (m). The simulation re-gion is small, which implies that the linear dependence on R of the subclumpmass can be neglected. The satellite mass is proportional to the cube of thevelocity dispersion, m / �3. This implies that dm=d� / �2. The chain rulethen gives: dNd� = dNdm dmd� / 1�4 (60)If the velocity dispersion of the satellites is greater than �0 then the number ofsatellites with � larger than this velocity dispersion should be:N (> �0) / Z 1�0 dNd�0 d�0 / Z 1�0 1�04d�0 = 1�30 (61)In the same way the number of satellites with velocity dispersion larger than �can be calculated: N (> �) / 1�3 (62)The probability distribution for � > �0 is thus:P (� > �0) = N (> �)N (> �0) = ��0� �3 (63)15



6P (�) -��min �maxq(�1; P1) q(�2; P2)Figure 2: Generation of random numbers � following a probability distribution P (�). The valuesof � corresponding to points (�;P ) lying above (under) the probability curve is rejected (accepted).3.3.2 The generation of random numbersThe random con�guration of subclumps should obey the probability distribution(63) derived above. Random numbers � that follow a probability distributionP (�) can be generated from two uniform random deviates [6]. These two uniformrandom deviates should have the following properties: �min < � < �max andP (�min) < P < P (�max). One can think of the two random numbers as a pointin the plane spanned by � and P (�), see �gure 2. If the point lies under theprobability curve, then the corresponding � is accepted as a random numberfollowing the probability distribution. If the point lies above the curve, thecorresponding � is rejected. Thus the point (�1; P1) in the �gure correspondsto �1 while (�2; P2) is rejected.The program used to generate the uniform random deviates is written by C.Walck.3.3.3 The total mass of the substructureThe total mass of the subhalos in the simulation region is a fraction of the massof the host halo. If the surface density of the host halo in the simulation regioncan be approximated as constant, then the total mass of the host halo withinthis region Mhalo is given by:Mhalo = �(�0~x0)Agrid = �2halo(N � 1)2�x2�0(�max)2Gj~x0j (64)where N is the number of grid points along each side of the grid and �x isthe grid spacing. The mass of the substructure within the simulation regionis thus Msub = f�Mhalo . Randomly distributed values of the parameter � aregenerated by the method described in section (3.3.2). The upper and lowermass limits for the subhalos are described in terms of �min and �max. Thecoordinates of the subclumps are generated randomly with values limited bythe size of the grid. 16



The number of subclumps is limited by Msub. The algorithm used to createsubstructure is written so that substructure is created as long as the total massof the subclumps does not exceed 90% ofMsub. The total mass of the substruc-ture can therfore deviate from Msub. For a large number of simulations these
uctuations should be evenly distributed so that they cancel out. If the totalmass of the substructure is required to sum up exactly to Msub, then there is arisk that the number of large subclumps is supressed.3.4 The de
ection angles caused by the substructure3.4.1 Truncated SIS treated as point massesWhen the de
ection angles caused by the substructure are computed, the sub-structure is �rst treated as point masses. This approximation is justi�ed by thefact that outside the truncation radius the de
ection angle caused by a SIS is thesame as the one caused by a point mass. The de
ection angle can be obtainedfrom the de
ection potential. A quick way to �nd the potential of the pointmasses is to solve Poisson's equation (13) numerically. In order to do this boththe source term 2�(~x) and the boundary conditions must be known. The ex-act boundary conditions can be calculated by superposition of the contributionfrom each subclump (50). The number of calculations needed to calculate theboundary conditon exactly is / NclumpNgrid, which is quite time{consuming ifthere is a large number of subclumps.The point masses are moved to the closest grid point and the surface massdensity is calculated by equation (48). A program written by R.C Le Bail, calledELPAHY, is used to solve Poisson's equation numerically. This partial di�er-ential equation solver utilizes fast fourier transforms and the �nite di�erencemethod. The �nite di�erence method can not deal with sharp edges or cornerssuch as the delta{function. The delta{function must therefore be approximatedin some way.3.4.2 Approximation of the delta{functionA way of solving the problem mentioned in the previous section is to softenthe peak. A two{dimensional Gaussian G(~x) = exp(��~x2) can be used toapproximate the delta function. The slope of G(~x) can be made arbitrarilysteep by varying the parameter �. The surface integral of the delta{function isby de�ntion unity, that is: ZR2 �2(~x)d2x = 1 (65)Therefore the Gaussian must be normalized with its volume. On the grid theGaussian is represented only by its value in a discrete number of points. It isconvenient to rewrite the Gaussian so that the shape of it remains the same fordi�erent values of the gridspacing �x. This can be done by a simple coordinatetransformation, ~x! ~x=�x. The approximation of the delta{function to be usedis thus: 17



6 -�1 0 +1Figure 3: Representation of the delta function on a grid. The delta{function for �xed x2 isdepicted. The rectangles approximate the area of this representation.�2(~x) � 1V�x2 e��((x1=�x)2+(x2=�x)2) (66)where V is the volume of the Gaussian on a grid with unity spacing. In �gure 3 apicture of the Gaussian in one dimension is shown. The Gaussian is representedby values only at the points; (�1; x2) , (0; x2) and (+1; x2). The area of thisrepresentation can be thought of as the rectangles shown in the �gure. Thecorresponding volume can analogously be represented with boxes. The volume ofthe small boxes is G(~x)Acell, where Acell = 1 is the area of a unity grid cell. Anapproximate value of V is thus obtained by simply adding the values of G(~x) atthe grid points. The slope of the Gaussian is chosen to be � = 3:5. The volumeon the unity grid, computed with the box approximation, is V � 1:12. This valueof the volume of the Gaussian is larger than the value calculated analytically:R1�1 R1�1 exp(��(x21 + x22))dx1dx2 = �=� = 0:898. This discrepancy is due tothe coarseness of the unity grid. How well this approximation of a pointlikemass works can be checked against the known solution  (~x) = 12 ln(x21 + x22).An even better agreement with the analytical solution can be achieved by usingV = 1:142. The approximation of the delta{function represented as a matrixlooks like (i.e. as the approximation looks like on the unity grid):
18
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ection angle from the subhalo mustbe recalculated. The re�ned calculation will be carried out for a square patchlarger than the area covered by the subhalo. The contribution to ~�sub(~x) fromthe subhalo must �rst be subtracted from the points inside the square patch.The mass of a pointlike object will only a�ect the strength of the de
ectionpotential and not its shape. This can be used to quickly �nd the contributionto the de
ection angle from a speci�c point mass. If a point with unity mass,�(~x) = ��2(~x), is placed in the middle of a grid and its boundary values areexactly speci�ed, then the numerical solution to the problem can be used to�nd the contribution from a point with arbritrary mass by just multiplying thissolution with its surface mass density.After the contribution from the point mass approximation has been removedfrom the square patch the exact contribution from that subclump is calculatedby equation (45). The size of the square patch depends on the radius of thesubclump under consideration. The formula used to calculate the number of gridpoints on the side of the square is Npatch = 2N h r(�;R)�0(�max)�x + 1i+2N h5 ��max i,where by N [: : :] is meant the nearest integer. The �rst term makes sure thatthe square patch covers the area of the subclump. The second term scales thesquare path with the radius of the clump.3.4.4 The outcome of the lensing equationThe lens mapping for the simulation region is given by equation (59). Withthis lens mapping the images for a given source can be reconstructed. Thesource position is calculated for every point in the grid and the grid points thatlie within a speci�ed source are recorded. The area of the image can then beestimated by the number of grid points corresponding to the source multipliedwith the area of a grid cell. The magni�cation can then be calculated withequation (18). The algorithm is written so that it can handle images that donot lie entirely within the grid. If any of the grid points corresponding toan image lies on the boundary of the grid, the computation is redone for the19



same substructure con�guration but with a 10 % lager grid spacing �x. Thisprocedure goes on until the whole image is covered by the grid. The algorithmcan thus handle multiple images at the expense of poorer resolution.4 Results of the simulations4.1 Lensing parametersThe smooth macro model is axially symmetric so that without loss of generalitythe source can be assumed to lie on the line ~y = (y; 0) in the lens plane. Conse-quently the images of the source will lie on the line ~x = (x; 0). If 0 < y < 1 thenthe lens equation (31) for the SIS becomes y = x � 1. There will then be twoimages of the source. One image on opposite sides of the lens. In the case ofy > 1 only one image will occur. This case is of no interest in this paper sinceit does not yield any 
ux ratios.The source and lens are assumed to be located at redshift z = 3 and z = 1respectively. A circular source with radius r is used. For all simulations thevelocity dispersion of the macro lens is assumed to be 240 km s�1. The valueadopted for the Hubble constant is H0 = h � 100 km s�1 Mpc�1 with h = 0:65.4.2 Di�erent distributions of substructureThe distribution of substructure favoured by CDM simulations is dN=dm /m�� with � = 2. How much does the value of � in
uence the results of thesimulations? In �gure 4 the probability distributions of the magni�cations fordi�erent values of � are plotted. In the upper left and right panels the distri-butions for the outer and inner images are depicted respectively. In the lowerpanel the distributions of di�erence in image brightness meassured in magni-tudes are shown. The sets consisting of data for the outer and inner image arenot correlated since they are treated separately. If for every point in the set ofdata for the outer image there is associated a point in the set of data for the in-ner image, it is nevertheless possible to obtain a probability distribution for thedi�erence in image brightness. The di�erence in image brightness, meassuredin magnitudes, for every pair of data is calculated by the following formula:�m = ln(�outer) � ln(�inner).The distribution of subhalos corresponding to di�erent � can be derivedwith the same type of reasoning as used in section 3.3.1. The distributions inthe �gure were obtained for 500 simulations. 5% of the host halo mass wasin subhalos of 104M� < m < 108M�. The source coordinate and radius werey = 0:12 �0(�halo) and r = 10 pc respectively. The vertical dotted lines inthe �gure correpond to the results for a point source lensed in the absense ofsubstructure.The mass distribution can obviously have a large e�ect on the observable�m. As can be seen from the lower panel a change in the exponent � by20



Figure 4: Probability distributions of magni�cations for di�erent mass distributions. In the leftand right panels are the distributions for the outer and inner image depicted respectively. Thecumulative di�erence in image brightness measured in magnitudes is shown in the lower panel.Negative values correspond to the cases when the inner image is brighter. The vertical dotted linesare the values for a point source lensed by the smooth macro lens in absense of substructure. Theprobability distributions in the �gure correspond to dN=dm / m�� . Dashed curve: � = 1:8. Solidcurve: � = 2. Dash-dotted curve: � = 2:1. Dotted curve: � = 2:3.more than � 10 % would give a rather di�erent probability distribution for thedi�erence in image brightness.4.3 Image splittingA circular source that is lensed by a singular isothermal sphere gives rise, undercertain conditions, to two elliptical images on opposite sides of the lens. Thepresence of substructure can cause these images to be splitted once more. Themost notable e�ect of this secondary splitting will occur for the larger subhalossince they a�ect the lensing more than the small ones. A typical situation inwhich the outer image is split in two is depicted in �gure 5. This situationoccured for a 10 pc source located at y = 0:12 �0(�halo) in the source plane. 5% of the halo mass was in substructure of mass 104M� < m < 108M�. In the�gure there are two larger subhalos, with center of mass located nearly at theorigin. If there were no substructure, the center of the image would be locatedat the origin. The two large subclumps act as a massive single lens, that splitsthe primary image into two secondary images. The distance in the lens planebetween the two primary images is approximately 4500 pc , whereas the distancebetween the two secondary images is only approximately 150 pc. If �� is theseparation of the images in the lens plane and Dd is the angular distance to thelens, the angular separation �� of the images is �� = ��=Dd. The lens is at21



Figure 5: Image splitting caused by substructure. The solid circles mark the substructure. Thesize of the grid is indicated by the large solid square. The scale of the grid is �0(�max) � 54 pc. Inthe absense of substructure the image of the circular source would be an ellips centered at (0;0).The image separation is approximatey 150 pc corresponding to an angular separation of 0:0200.redshift z = 1, which corresponds to Dd = 1:4 � 109 pc. The angular separationof the primary and secondary images is thus 0:6600 and 0:0200 respectively. Theseparation of secondary images is thus only 3 % of the separation of the primaryimages.It is plausible that only the largest subhalos cause secondary image splitting.This is beacuse smaller subhalos imply a larger number of subhalos, whichin turn implies that the resulting potential is smoother than for a few largesubhalos. If this is the case, then the separation of secondary images couldbe used to roughly estimate the mass of the subhalo responsible for the imagesplitting.4.4 Comparison with Metcalf and MadauDo the results of the simulations agree with the results of Metcalf and Madau?In �gure 6 the cumulative distribution for di�erent forms of substructure anddi�erent source sizes are plotted. The results of Metcalf and Madau for thesame parameters are shown in �gure 7. At �rst sight the results presented inthe two �gures do not seem to be consistent. But a closer look at the �guresreveals that, the dependence on the fraction of substructure f� is roughly thesame in both �gures. This can be seen by comparing the behaviour of curvescorresponding to the same source size to each other. Thus the dependence of thefraction of substructure obtained here is roughly the same as the one Metcalfand Madau obtained. There is however one big di�erence beteween the curves22



Figure 6: Cumulative probability distributions for di�erent forms of substructure and source sizes.The Solid curve is the distribution obtained for f� = 5 %, with subclump masses: 104M� < m <108M� and a 10 pc source. The Dash{dotted curve is the same except that f� = 10 %. The Dashedcurve is the distribution obtained for f� = 5 %, with subclump masses: 103M� < m < 107M�and a 1 pc source. The Dotted curve is the same except f� = 10 % . The position of the sourceswas for all curves y = 0:12 �0(�halo).
Figure 7: The results of Metcalf and Madau, �gure 4 in reference [3]. The cumulative magni-�cation distributions for the two images of a SIS lens with source position y = 0:12 measured inlensing scale lengths. The distribution of image 1 { the primary image or outer image { is plottedon the left. In the center is the distribution for image 2. On the right the cumulative distributionof the di�erence in image brightness measured in magnitudes is shown. Negative values of �mcorrespond to the cases where image 2 is brighter than image 1. The vertical dotted lines are thevalues expected for a smooth lens and an in�nitely small source. The di�erent curves are for dif-ferent forms of substructure and source sizes. The solid curve assumes that 5 % of the mass is insubslumps with 104M� < m < 108M�, and a 10 pc source. Dashed line: The same except with10% of the mass in substructure. Dash{dotted curve: assumes 5 % of the mass in subclumps with103M� < m < 107M�, and a 1 pc source. Dotted curve: same as the dash{dotted line only with10 % of the mass in substructure. 23



Figure 8: Cumulative probability distributions of magni�cation for di�erent ranges of the mass mof the subhalos. Solid curve: 104M� < m < 105M�. Dash{dotted curve: 105M� < m < 106M�.Dashed curve: 106M� < m < 107M�. Dotted curve: 107M� < m < 108M�. The fraction ofsubstructure is for all curves f� = 2 %. The radius and position of the source are for all curves 10pc and y = 0:12 �0(�halo) respectively.obtained in this paper and in [3], namely the lack of low magni�cations in theformer. The absence of low magni�cation can be explained by the resolutionproblem that will be discussed in section 4.5.2. This e�ect is systematic so thatthe probability distributions for the observable di�erence in image brightnessare almost the same.In �gure 8 the probability distributions for di�erent ranges of masses ofsubstructure are plotted. In �gure 9 the corresponding results of Metcalf andMadau are shown for comparison. The relations beween the di�erent curves pre-sented in this paper are essentially the same as the relations between the curvesof Metcalf and Madau. However the distributions for the largest subclumps107M� < m < 108M� are not at all alike. For some values of the magni�cationthe curves in [3] are vertical. This implies that the probability of that valueof the magni�cation is high. This might be an e�ect that arises when the con-tribution from many large subclumps are considered. The algorithm used herecan not handle many large subclumps with good resolution of the images. Sothat the probability curves for subclumps with mass 107M� < m < 108M� isobtained with only one or a few subhalos.4.5 Reliability of the methodThis section contains a discussion of the reliability of the results of the simula-tions and the sensitivity of the results to the simulation parameters.24



Figure 9: The results of Metcalf and Madau, �gure 6 in reference [3]. The cumulative magni�-cation distribution for the two images of a 10 pc source with source position y = 0:12. The threedi�erent curves correspond to di�erent subclump mass ranges. Solid line: 104M� < m < 105M�.Dashed line: 106M� < m < 107M�. Dotted line: 107M� < m < 108M�. The mass fractionin subclumps, f�, is held �xed at 2 %. The subclumps are progressively more in
uential as theyget more massive despite their smaller number density. The vertical sections of the dotted curvesare located at the background magni�cations { the value of the magni�cation when there are nosubclumps in
uencing the image.4.5.1 Image resolutionHow reliable is the method used to compute the magni�cation of the source?The magni�cation is given by the ratio of the image and source areas. Thenumber of grid points N found to correspond to a given source and the area ofthe grid cells are used to calculate the area of the image. If the number of gridpoints N increases, the error in the calculation of the area should decrease. Inpractice the total number of gridpoints is held �xed, so that a higher resolutionof the images is obtained by shrinking the area of the grid cells. When countingthe number of gridpoints corresponding to images the error is expected to be� pN . The relative error in N is thus, �N � pN=N = N�1=2. In �gure 10the relative error for the magni�cation of the outer image of a SIS is plottedversus N . The relative error was computed under the assumption that the truemagni�cation is the same as for a point source �point. The relative error is then�� = �=�point � 1. As can be seen from �gure 10 the relative errors in themagni�cation are somewhat lower than expected, but follows the curve nicely.This is due to the fact that the source is extended. The magni�cation of anextended source �e is smaller than the magni�cation of a point source. Thisimplies that �=�e > �=�point and (��)e > (��)point. The points in the �guretherefore represent a lower limit of the relative error. From the distributionN�1=2 it can be seen that � 400 points is su�cient to compute the magni�cationwith an accuracy of � 5 %. The grid spacing �x must thus be carefully chosenso that N is large enough even for small magni�cations, i.e. relatively smallimages. 25



Figure 10: The �gure shows the relative errors j��j in the magni�cation versus the numberof points N used to compute the area of the image. The solid curve is �N = N�1=2 . Therelative error in the magni�cation is calculated with respect to the magni�cation of a point source,�� = �=�point � 1. From the �gure it is evident that the relative errors follow the distributionN�1=2 .
Figure 11: The in
uence of grid spacing �x on the probability distributions of magni�acations.The distributions were obtained for; f� = 10 %, y = 0:12 �0(�halo) , r = 10 pc and the mass rangewere 103M� < m < 107M�. The upper left and right panels show the cumulative distributionsfor the outer and inner image respectively. In the lower panel the cumulative distributions forthe di�erence of image brightness measured in magnitudes are shown. Solid curve: �x = 0:005corresponding to � 10 subclumps . Dashed curve: �x = 0:01 corresponding to � 20 subclumps.Dash{dotted curve: �x = 0:02 corresponding to � 30 subclumps.26



4.5.2 The size of the gridIn section 4.5.1 the resolution of individual images was discussed. The questionin this section is how the size of the grid (i.e. the resolution) a�ect the statisticsof a large number of simulations? If all lensing parameters but the grid spacing�x is kept �xed how will it a�ect the probability distributions? A larger valueof the grid spacing �x implies a larger grid, which contains more mass and moresubstructure. In �gure 11 the cumulative probability distributions for di�erentvalues of �x are shown. In the upper left and right panels the distributionsfor the outer and inner image are plotted respectively. In the lower panel thecumulative distribution of the di�erence in image brightness of the di�erentimages measured in magnitudes is plotted. As can be seen from the �gure, thegrid spacing do a�ect the result. The larger the grid spacing is, the larger is thespread in the distribution. For small values of the grid spacing the probabilityfor small and large magni�cations is suppressed. The most important thingto note here is that an increasing number of subhalos implies an increasingprobability of small magni�cations. This might be an explanation of the lack ofsmall magni�cations for the largest subhalos found in section 4.4.Why is the probability distributions of magni�cations a�ected by the sizeof the grid? If the grid is to small, then the substructure just outside the gridcan not be approximated with a smooth potential. The grid must be so largethat the contribution to the lensing potential from any substructure outside thegrid can be treated as a part of the smooth host halo. For subclumps that aresmall compared with the image this should not be a problem. If the subclumpsare large compared to the image, then the need for a su�ciently large grid willbe in con
ict with the need for good resolution. If the grid is small and thesubclumps are large, then the grid can only contain one or a few subclumps.The method used for generation of substructure does not allow for the possibilitythat the grid may be under{ or over dense compared to the average distributionof subclumps. If the simulation region can be under{ or over dense, then thespread in the distribution of magni�cations should be larger. Another possibilitythat arises when the number of subclumps rises is that the contributions to thede
ection potential from each subclump may to some extent cancel out. Thedistributions should then tend to the smooth case.4.5.3 StatisticsIf several simulations are made for the same simulation parameters, then it ispossible to obtain probability distributions for the magni�cation in the pres-ence of substructure. A question that naturally arises is, how many simulationsare needed to obtain good statistics? In �gure 12 the cumulative magni�cationdistributions obtained for 500, 1000 and 5000 simulations are compared to thedistribution obtained for 10000 simulations. In the upper left panel the distri-bution obtained for 500 and 10000 simulations are drawn. With the data from500 simulations it is possible to recover the charateristic shape of the probabil-ity distribution. As can be seen from the upper right panel the distrubution27



Figure 12: Comparison of the magni�cation distributions for di�erent number of simulations.The solid line corresponds to the magnifaction distribution obtained for 10000 simulations. Thedotted line in the upper left and right panels corresponds to the distribution obtained for 500 and1000 simulations respectively. In the lower panel the distribution for 5000 simulations is plotted as adotted line. The vertical dashed line in the �gures shows the magni�cation for a point source lensedby a SIS. 500 simulations seem to be enough to get a rough estimate of the probability distribution.The distributions based on more than 1000 simulations deviates only a little from each other.obtained for 1000 simulations is quite good. In the lower panel the distributionfor 5000 and 10000 simulations are plotted. The agreement betweeen these twocurves is execellent. From the above discussion it is clear that � 500 simulationscan be used to get a quick estimation of the probability distributions. If a moreaccurate distribution is neded more than 1000 simulations are necessary.5 ConclusionsIn the above it has been shown that a small change in the distribution of subhaloswould give a signi�cant change in the probability distributions of magni�cations.The simulations have also shown that substructure can cause secondary split-ting of the images. The expected separation of the secondary images is of theorder of 10 milli{arcseconds. If the splitting can be observed it could be usedto estimate the mass of the substructure.The results presented in this paper are consistent with the results of Metcalfand Madau except for the largest subhalos. The discrepancies between theprobability distributions of magni�cations can probably be explained by the factthat the method presented here is not capable of dealing with large subclumps.There are two solutions to the problem of simulating gravitational lensingwith large subhalos. The �rst one is to increase the number of grid points. This28



has the advantage that it will give very good estimates of the magni�cation foreach simulation and it allows much more substructure. The obvious disadvan-tage is of course that the simulations will take longer time to perform. Theother approach is to distribute the substructure over a grid that is larger thanthe one that is actually used. The larger grid could obviously contain moresubstructure than the small one. The mean density of substructure should bethe same on the smaller grid, but there is also the possibility that the smallergrid is denser than it is on average. In that case it contains more substructure,which is good. This approach should re
ect a more realistic model, then theone used in this paper. For small subclumps there is no di�erence, but for thelarge ones there should be a di�erence between the two models. Keeping trackof more substructure than necessary might be a burden for the computer, whyit should be used only when necessary.It would also be interesting to use more realistic models for the macro modeland the substructure. The approximationwith point masses can be done outsideall truncated spherically symmetric mass distributions, so the basic ideas of themethod can still be used.
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