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Abstract

Smooth density profiles of galaxy halos has succesfully been used to
model gravitational lensing systems. There are indications that dark mat-
ter halos contain substructure. In this paper the effects of substructure
in a smooth host halo are explored by numerical simulations. The ba-
sic theory of gravitational lensing is reviewed and a model for compound
gravitational lensing is presented. The effects of different forms and dis-
tributions of substructure are investigated. The results were found to be
in agreement with previous simulations except for those for the largest
subhalos. An example of secondary images caused by the presence of sub-
structure is also presented. Furtermore the reliability of the method and
the sensitivity to the simulation parameters are discussed.
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1 Introduction

The sky 1s full of bright stars, but these luminous objects are supposed to make
up only a small part of the universe. Most of the universe consists of dark
matter. Dark matter does not emit any radiation and is therefore not visible.
The luminous matter in galaxies is supposed to be surrounded by a halo of dark
matter. The nature of dark matter halos will be of interest in this paper.

Even though dark matter does not radiate it can still be detected. Dark
matter reveals itself by the gravitational force it exerts. One of the consequences
of Einstein’s theory of general relativity is that light is bent by mass. The
gravitational field of a deflecting mass, called the gravitational lens, can focus
the light of a source and give rise to multiple images of it. These images can
be magnified or demagnified relative to the source. This 1s called gravitational
lensing. Gravitational lensing is a powerful tool for testing different models of
dark matter.

Smooth density profiles have been successfully used to model gravitational
lenses. There are however indications that the galactic halos are more complex
than these models. For some gravitational lensing systems the smooth models
have been able to predict the image positions, but failed to explain the observed
flux ratios of the images [1]. Substructure within the halos might be a solution
to this problem.

Another important reason to study the effects of halo substructure 1s the
so called “small scale crisis” [2]. According to numerical simulations, based on
the cold dark matter (CDM) scenario for structure formation, galaxies should
resemble scaled down versions of galaxy clusters. The simulations predict the
existence of several hundred subclumps within the Milky Way halo, but only a
dozen have been observed.

In this paper gravitational lensing with halo substructure will be investigated
by numerical simulations. Compound gravitational lensing has recently been
studied by Metcalf and Madau [3]. They used a smooth host halo with a few
percent of the mass contained in subhalos. They claimed that this substructure
affect the magnification ratios appreciably while the image positions are almost
the same. One of the purposes of this paper is to try to reproduce the results
of Metcalf and Madau.

The outline of the paper is the following. First the basic framework of grav-
itational lensing and models for the host halo and substructure is presented.
After that follows a description of a method to do numerical simulations of
compound gravitational lensing. Finally the results of the simulations are pre-
sented and discussed.

2 Theory

In this section the theory needed to model a compound gravitational lensing
system is presented. The theory is taken from the references [4] and [5].



Flgure 1: A general gravitational lensing system. The center of the lens is at L. The line trough
L and the observer O serve as a reference line and is called the “optical axis”. Relative to the
optical axis, the source S has an undisturbed angular position 8. A light ray SO from the source is
deflected by an angle &, so that the image I is observed at the position . The distances from the
observer to the lens and the source are Dy and D respectively. Dgs denotes the distance from the
lens to the source.

2.1 General gravitational lenses
2.1.1 Derivation of the lens equation

In figure 1 a general lensing system is depicted. The system consists of a source,
a gravitational lens and an observer. The source S and the lens L both lie on
spheres centered on the observer O. The radii of the source and lens spheres
are D, and Dy respectively. The deflection angle of the light is in all cases
of astrophysical interest so small, that the spheres can be approximated with
their tangent planes. The planes corresponding to source and lens spheres are
called source plane and lens plane respectively. From the geometry of figure 1, a
relation between the angular position 5 of the unlensed source and the angular
position = g/Dd of the image can be derived:

—

6:5_ Dds

D

a (1)

where @ is the deflection angle of the light ray. This is the so—called lens equa-
tion. It can be rewritten in terms of the physical vectors 77 = D/ and £ in the
source and lens plane respectively:

A~

Ds = JaN
m=p ¢~ Pasal) (2)



The thickness of the lens is typically much smaller than the distances D, and
Dg. The lens can therefore be approximated by a thin screen in the lens plane.
The mass distribution p(g, z) of the lens can then be projected along the line-
of-sight (i.e. the z—axis) and be replaced by a mass sheet orthogonal to the line
of sight. This mass sheet is characterized by its surface mass density:

S@= [ pEa )
The deflection angle caused by a point with mass m located at 5_; 1s:
_AGm £-¢

I

where GG is Newtons gravitational constant and ¢ is the speed of light. For an

(4)

2

(€)

extended matter distribution the deflection angle is given by the sum of the
deflections due to all mass elements in the lens plane:

(5)

2.1.2 The scaled lens equation

It is useful to rewrite the lens equation (2) and the surface mass density (3)
in dimensionless form. To do this first one defines a length scale &y in the lens
plane and a corresponding length scale g = £y Dy /Dy in the source plane. Then
one defines the dimensionless vectors:

— g — ﬁ
r=—; y=— 6
& YT ©)
as well as the dimensionless surface mass density:
o E(6d)
W) = 2 @

where the critical surface density 2., is defined as:

2D,

= 4xGDyDy, (8)

cr

The lens equation (2) can then, with the help of equations (6) and (7), be written
in the dimesionless form:

=7 - a(@) )
where: ) ., DD
27— — A2 k(7 L= _ Palds = - 10
3@ = ¢ [ () e = S d(ed) (10)



2.1.3 The deflection potential

The identity VIn |Z| = # shows that the deflection angle (10) can be written
as the gradient of a potential (Z):

a(E) = Vi (F) (11)

where: )
P(¥) = —/ d?x' k(') In |7 — 7| (12)
T JR2
The relation (12) giving ¢ in terms of & can be inverted via the identity

VZ1In(Z) = 2762 (F) to give Poisson’s equation:
V(7)) = 2k(7) (13)

2.1.4 The magnification factor

Gravitational light deflection can magnify or demagnify the images of a source.
The differential deflection across a light bundle affects the properties of the
images. Since surface brightness is conserved, the flux of an image is determined
by this area distortion. Consider an infinitesimal source with surface brightness
I,, where v is the observed frequency. In the absence of gravitational light
deflection this source subtends a solid angle dw™ on the sky. The monocromatic
flux from this source is:

Sy = Idw* (14)

If the light bundle undergoes deflection the solid angle of the image dw will
differ from dw*. Since the light bending affects neither v nor I, the observed
flux from the image is:

Sy, = Ldw (15)
the light deflection leads to a change of the observed flux by a factor:

Sy dw

Il = S_;;_ do*

(16)

|| is called the magnification factor. The solid angles can be expressed as dw =
and dw™ = . e magnification factor can then be rewritten as:
d*¢/D? and dw* = d*n/D?. Th gnification f hen b i

_d% (Dy\?
|ﬂ| = ﬂ (D_d) (17)

If the scaled vectors (6) are used equation (17) becomes:

A’z
" 1
Il = 2y (18)



Tt is thus seen that the magnifiaction factor |u| can be obtained from the Jaco-
bian determinant, which describes the area distortion of the lens mapping (9).
If the Jacobian matrix for the lens mappig is defined as:

oy

A(Z) = 1
@)= (19)
then the magnification factor can consequently be defined as:
() = s (20)
M= Jet A7)
Equation (19) and equation (11) imply that:
Aij = dij — i (21)

where the partial derivatives of the scalar function ¢ with respect to z; are
denoted by the subscripts i.

2.1.5 The angular diameter distance

Distances in the universe are not directly observable. The distances used in the
formulas depend on the choice of cosmology. In this paper an Einstein—de Sitter
universe, corresponding to € = 1, is assumed. The angular diameter distance
D can be written as:

C

D= H—Or(z) (22)

where Hy is the Hubble constant and r(z) is the “dimensionless Dyer—Roeder
distance”. The distance r(z) dependens on the observable redshift z. The
explicit solution to the Dyer—Roeder equation for an Einstein—de Sitter universe
is:

1 5 _ (1 -8

oo e = (1)
28(1 + z)5/4

where § = /25 — 24a depends of the clumpiness parameter @. Throughout this

paper the background cosmology is supposed to be smooth, corresponding to
a=1.

(23)

2.2 Axially symmetric lenses

In the case of axisymmetric lenses, E(g) = E(|€|), the formulas above become
particularly simple. The notation « = |#| is used below. The deflection angle
(10) for an axisymmetric lens is:

@) = M), (24)

where:



m(x) = /Ox r'dr'k(z) (25)

The deflection potential (12) for an axially symmetric mass distribution is:
Y(z) = 2/ ¢'dz'k(z’) In (i/) (26)
0 X

2.2.1 The singular isothermal sphere

A mass distribution often used to model gravitational lenses is the Singular

Isothermal Sphere (SIS). The density profile of the SIS is:

0.2

r) = ——
plr) 27 Gir?
where ¢ is the line—of-sight velocity dispersion and r is the distance from the
core. The corresponding surface mass density is obtained by equation (3):

- o? [ 1 c? [1 z]™ o?
Y(¢) = e /_Oo 52_|_sz,z: 5 [g arctan E]_ = 2GE (28)

oQ

(27)

where £ = |€| The natural length scale for a SIS is:
o o2 DdDds
$o= 4”(?) D, (29)

With this length scale the dimensionless surface mass density, defined by equa-
tion (7), becomes:

r(r) = o~ (30)
The deflection angle (24) for a SIS is &(¥) = % The lens equation is thus:
(31)

The deflection potential (26) for a SIS is ¢(#) = « . Together with equation
(21) this give the Jacobian matrix:

1-% o

3 3

&3

This implies that det A(%) =1 — % which in turn implies that the magnification
factor is:

(33)




2.3 The substructure model
2.3.1 Mass and radius of the substructure

Metcalf and Madau model a compound lens as a smooth host halo with subhalos.
The substructure is only realized in a simulation region where it will make up
a fraction fs of the mass of the host halo. The host halo 1s modeled as a SIS
and the subhalos are modeled as truncated SIS. The masses and radii of the
subclumps, as given in [3], are:

2 3
_ _2Re” r(o, R) = _fe
V3G hato V30 hato

where R is the distance from the center of the host halo and ¢4, 18 the velocity
dispersion of the host halo. o is the velocity dispersion of the subclump. The
truncation radius and the mass of the sphere are related to each other. The
truncation radius r(o, R) is given by:

m(o, R) (34)

9 2 r(o,R) 9 2
m(o, R) = / p(r)ridrdQ = il dr = Lr(a, R) (35)
RS G Jy G
The properties of the subhalos can therefore equally well be described by m(eo, R)
or r(o, R).

2.3.2 The deflection angle for a truncated SIS

The truncated singular isothermal sphere has the following mass density ex-
pressed in spherical coordinates (r, 8, ¢):

g% 1 :
_ ) Zgm ifr<r(oR)
plr) { 0 if r > r(o, R) (36)

When projecting upon the line—of-sight, cylindrical coordinates (&, ¢,z) is a
better choice:

o 1 if €2+ 22 < r*(0, R)
) =4 waEe ! ’ 37
p(g Z) { 0 if gz + 22 > 7“2(0', R) ( )

The surface mass density, given by equation (3), is:

r2(o,R)—¢? o2 1 p
(© /_W%G@HZ (35)
The integrand of (38) is even, which can be used to simplify the integral. If the
coordinates are changed to y = z/£ the integral can be simplified even more:

s = a2 [V (™) = 1 p o? ; r(o, R)\” ]
&) = 7T—G€/o arctan <7) -

1+y2 Y~ rGe 3
(39)

10



The dimensionless surface mass density can be calculated with the use of equa-

tion (7) and the length scale (29):

k(2) = —— arctan (r(”’}%))z —1 (40)

T Eox

where # = |#| as before. The truncated SIS is axially symmetric so the deflection
angle can be calculated by using equation (24).

mm:ZAEMm Czjvaq dz’ (41)

T

If the variable s = Tg’ﬁ) is used, then the integral (41) adopts a simpler form:

2 <1 21
m(s) = —M/ —,; arctan ( i ) ds
T & r(o,R) §2 s

3

(42)

s s

(o)
s2—1 arctan(vs? — 1)
r(o,R)
g0

VsZo1 arctan(v/s2—1)

5 5

Since limg_, o ( ) = 1, the upper limit in (42) gives
2r(o, R)/m&y. The lower limit gives rise to two different expressions depending
on whether z&, is larger or smaller than the radius of the subclump r(o, R).
Since all of the surface matter density of the subclumps is contained inside
a disc with radius r(o, R), the integrand vanishes for z&; > r(o, R). When

r(o, R)/x&y < 1 equation (42) therefore implies:

2 r(o, R)
m(z) = 212 ()
When r(o, R)/x& > 1 equation (42) instead gives:
2 2
m(z) = %l‘ r(g’f) - (r(g’f)) — 1+ arctan (%) -1
0 0 0
(44)

In the simulations it is necessary to use one length scale for truncated SIS
with different velocity dispersion. This length scale is chosen to be the one cor-
responding to the largest subhalo, £y(omas). &o(o) is the natural length scale
(29) for the SIS. The deflection angle caused by smaller subhalos is therefore
multiplied with a factor & (o) /&0 (Tmar) = 02 /02, 1t is also convenient to in-
troduce a = r(o, R)/£o(0maz )& where x is defined by equation (6) for &y (omaz)-
If the distance z is meassured in units of &(omay), then (o, R)/&o(0)a’ =

11



(o, R)/&0(0mas ), Where the primed  denotes the distance meassured in terms

of &y(o).
Finally the deflection angle (24) caused by a truncated SIS is given by:

9 2 e 5 .
(7 = a2 o a—+Va 1+ arctan(v/a 1) ¥f a>1 (45)
T a ifa>1

Umax

2.3.3 The deflection angle for a pointlike object with mass m(o, R)

The deflection angles for a truncated SIS and a point mass are identical when
a < 1. This will be shown below. The surface mass density of a point with mass
M is given by E(g) = M(S?(é'). According to the definition (7) the dimensionless
surface density for a point mass is:

L M (&)

"=

The identities §?(Z) = §(x1)d(x2) and §(ax) = ﬁé(r) can be used to rewrite
the two-dimensional delta—function as §%(&oZ) = 6%(%)/€2. If M = m(o, R) =
Er(O', R) and the definition (8) of ., is inserted into equation (46), the fol-

€]
lowing equation is obtained:

(46)

2r(o, R) 4mo? Dy D45
& 2D,
In this equation one can identify the length scale (29) for a SIS. This length

scale is related to the subclump mass. If £5(omay) 18 chosen as the length scale
for the distances, then the dimensionless surface density is:

() = 2r(o, R)&o (o) 52(5) _ ( o ) 2r(o, R) 52(5) (48)

gg(o-max) gO(Umax)
The deflection angle can then be calculated by equation (10):

oy 2 s\’ r(o, R) o B
O[(l‘) = — ( ) /7€2 dzl‘/(sz(l‘/)m

™ Omax gO(Umax)

@&(f):z( 7 )2 r(o, ) i:3<L)2ag§ (49)

T Omagx go(ama@‘) |f|2 ™ Omas

This is the same expression as for the truncated SIS with @ < 1. Thus, outside a
truncated SIS the deflection angle is the same as for a pointlike object with the
same mass. This equality will later be used in the simulation. The corresponding
deflection potential, given by equation (12), is:

2
¢(f):3< o ) rio, ) /Wd%/az(f')lnw—fq

™ Omax gO(Umax)

k(%) =

6%(%) (47)

Umax

12



sun =2 (2 ) S (50)

™ Omax O(Umax)

3 Documentation of the simulation

The method used for simulating compound gravitational lensing is essentially
the same as the one Metcalf and Madau used in their paper.

First, models are chosen for the host halo and the substructure. Second,
a random configuration of substructure is created. Then the deflection angle
caused by the substructure is calculated on a grid in the lens plane. Thereafter
the lens equation is used to decide which gridpoints in the lens plane correspond
to a given source. This information is then used to calculate the magnification
of each image of the source.

A singular isothermal sphere 1s used to model the host halo. The subhalos
are modelled as truncated singular isothermal spheres. A useful property of the
truncated SIS is that outside the radius of the sphere the deflection angle is
the same as for a point mass. The deflection angles caused by the substructure
can in principle be calculated by superposition of the deflection angles caused
by each subclump. Since the number of subhalos and the number of gridpoints
are both large, such a calculation would be quite time-consuming. A faster
way to calculate the deflection angles is therefore desired. Outside the radius
of the subclump the contribution to the deflection angle can be treated as if it
originated from a point mass. The calculation of the deflection angles caused
by the substructure is therefore carried out in two steps. First all subclumps
are treated as point masses. At a second stage a refined calculation is carried
out in the neighbourhood of each clump.

The simulation was written in the programming language FORTRANT7 [7].

3.1 The lensing equation used in the simulation

The simulation region covers only a small part of the area of the host halo in
the lens plane. This makes it necessary to treat the contributions from the
halo outside the simulation region in some way. The method used by Metcalf
and Madau is presented below. The fraction of the host halo that consists of
substructure is denoted fyx;. If this fraction of substructure is considered only in
the simulation region, then the surface density of the host halo can be written:

(51)

(@) Ksmooth (Z') outside simulation region
Fhalol") = [1 — f=(Z0)]Ksmooth (Z')  inside simulation region

where Zj is the center of the simulation region and fy is supposed not to change
within the simulation region. In addition the host halo is supposed to be smooth.
According to the principle of linear superposition, the small deflection angles
add. The lensing equation inside the simulation region can thus be written:

13



J =8 = Qo (F) = 0 (F) (52)

sub
It is convienient to let the center of the simulation region and the image of the
smooth macro lens coincide. In the absence of substructure the image appears
at ¥y and the lensing equation is:
gO = fO - &smooth(EO) (53)

Inserting equation (53) into equation (52) and changing coordinates to & =
¥ — %y and ¥ = i — o will give:

—

g: Z— &halo(f+ 50) + &smooth(xO) - &sub(f+ 50) (54)

It is desirable to have an expression whitout &pe0(#). If the surface density
inside the simulation region can be approximated as constant, then the following
approximation can be made:

Ksmooth (f/) — Rhalo (f/) = fEK?smooth(f/) 7 fEK?smooth(fO) (55)

After adding and subtracting asmeotn (% + Zo) to equation (54) and rearranging
the terms, the following equation is obtained:

g: T+ &smooth(f+ 50) - &halo(f+ 50)‘1‘

+&smooth (50) - &smooth(f+ 50) - &sub(f+ 50) (56)

A relation between the surface density and the deflection angle can be obtained
by integration of Poisson’s equation (13):

&smooth (f‘i‘ 50) - &halo(f+ fO) = /(Ksmooth (f‘i‘ fO) — Rhalo (f‘i‘ 50))df (57)
The approximation (55) and equation (57) give:

&smooth (f‘i‘ fO) - &halo(f + fO) R~ fE(EO)Ksmooth (50)5 (58)

If equation (58) is inserted into equation (56), the final lens equation for the
simulation region is obtained:

g: l_"— O_Zsmooth(f + fo) + O_Zsmooth (50) + fEK:smooth (50)5 - O_Zsub(i:+ fo) (59)

14



3.2 The grid setup

The simulation region is smaller than the projection of the halo upon the lens
plane. Especially the image separation is larger than this region. Therefore,
whenever the smooth model of the host halo predicts more than one image, these
are treated separately. A square grid centered at &g is used to approximate the
simulation region and the length scale used is (29) with o = 45 inserted. If the
number of grid points along each side of the grid is NV and the gridspacing is Az,
then the physical area of the simulation grid is: Agq = ((N — I)Axé’o(amax))z.
The number of grid points and the length scale are kept fixed for a given mass
range of substructure. The grid spacing is then used to adjust the area of the
grid, so that it fits the subtructure configurations. In the simulations a 2572
grid is used.

3.3 The substructure setup
3.3.1 The probability distribution

The subhalos are described by their mass distributions and coordinates in the
lens plane. The truncated SIS used by Metcalf and Madau are described by the
velocity dispersion ¢ and the distance to the center of the host halo B. The
subclump radii and masses are functions of these two parameters and are given
by equation (34). The number of satellites is supposed to be inversely propor-
tional to the mass squared, dN/dm o m~2. What is then the corresponding
probability distribution? Since the mass of a subhalo i1s a function of o, the
probability distribution P(c) is needed rather than P(m). The simulation re-
gion is small, which implies that the linear dependence on R of the subclump
mass can be neglected. The satellite mass is proportional to the cube of the
velocity dispersion, m o ¢3. This implies that dm/de « 2. The chain rule
then gives:

dN _ dN dm 1

do ~ dmdo ot
If the velocity dispersion of the satellites is greater than oy then the number of
satellites with o larger than this velocity dispersion should be:

(60)

© dN <1 1
N(> og) x / —do’ oc/ —do’' = — (61)
do’ oy 0% 3

Jo

In the same way the number of satellites with velocity dispersion larger than o
can be calculated:

N(> o) x % (62)

The probability distribution for ¢ > o is thus:

Plo>m) = g = () (63)

15



Figure 2: Generation of random numbers A following a probability distribution P(X). The values
of X corresponding to points (X, P) lying above (under) the probability curve is rejected (accepted).

3.3.2 The generation of random numbers

The random configuration of subclumps should obey the probability distribution
(63) derived above. Random numbers A that follow a probability distribution
P(A) can be generated from two uniform random deviates [6]. These two uniform
random deviates should have the following properties: A < A < Appae and
P(Amin) < P < P(Amar). One can think of the two random numbers as a point
in the plane spanned by A and P(A), see figure 2. If the point lies under the
probability curve, then the corresponding A is accepted as a random number
following the probability distribution. If the point lies above the curve, the
corresponding A is rejected. Thus the point (A1, P;) in the figure corresponds
to A; while (Aq, P3) is rejected.

The program used to generate the uniform random deviates is written by C.

Walck.

3.3.3 The total mass of the substructure

The total mass of the subhalos in the simulation region is a fraction of the mass
of the host halo. If the surface density of the host halo in the simulation region
can be approximated as constant, then the total mass of the host halo within
this region Mpq, 1s given by:

o a; N —1)2Az? Omax
Mgt = S(€070) Agpig = Zhatel 2();|50| €0(0mar)

where N is the number of grid points along each side of the grid and Az is
the grid spacing. The mass of the substructure within the simulation region
1s thus M. = fs Mpaio. Randomly distributed values of the parameter o are
generated by the method described in section (3.3.2). The upper and lower
mass limits for the subhalos are described in terms of o,,;, and o,,4.. The
coordinates of the subclumps are generated randomly with values limited by
the size of the grid.

(64)

16



The number of subclumps is limited by Mj,;. The algorithm used to create
substructure 1s written so that substructure is created as long as the total mass
of the subclumps does not exceed 90% of M,,,. The total mass of the substruc-
ture can therfore deviate from M,,,. For a large number of simulations these
fluctuations should be evenly distributed so that they cancel out. If the total
mass of the substructure is required to sum up exactly to Msyp, then there is a
risk that the number of large subclumps is supressed.

3.4 The deflection angles caused by the substructure
3.4.1 Truncated SIS treated as point masses

When the deflection angles caused by the substructure are computed, the sub-
structure is first treated as point masses. This approximation is justified by the
fact that outside the truncation radius the deflection angle caused by a SIS is the
same as the one caused by a point mass. The deflection angle can be obtained
from the deflection potential. A quick way to find the potential of the point
masses is to solve Poisson’s equation (13) numerically. In order to do this both
the source term 2x(%) and the boundary conditions must be known. The ex-
act boundary conditions can be calculated by superposition of the contribution
from each subclump (50). The number of calculations needed to calculate the
boundary conditon exactly is &< Nejump Ngria, Which is quite time—consuming if
there is a large number of subclumps.

The point masses are moved to the closest grid point and the surface mass
density is calculated by equation (48). A program written by R.C Le Bail, called
ELPAHY, is used to solve Poisson’s equation numerically. This partial differ-
ential equation solver utilizes fast fourier transforms and the finite difference
method. The finite difference method can not deal with sharp edges or corners
such as the delta—function. The delta—function must therefore be approximated
in some way.

3.4.2 Approximation of the delta—function

A way of solving the problem mentioned in the previous section is to soften
the peak. A two-dimensional Gaussian G(Z) = exp(—3%?) can be used to
approximate the delta function. The slope of G(#) can be made arbitrarily
steep by varying the parameter 3. The surface integral of the delta—function is
by defintion unity, that is:

§2(&)d%x =1 (65)
RQ

Therefore the Gaussian must be normalized with its volume. On the grid the
Gaussian is represented only by its value in a discrete number of points. It is
convenient to rewrite the Gaussian so that the shape of it remains the same for
different values of the gridspacing Az. This can be done by a simple coordinate
transformation, & — Z/Ax. The approximation of the delta—function to be used
is thus:
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where V' is the volume of the Gaussian on a grid with unity spacing. In figure 3 a
picture of the Gaussian in one dimension is shown. The Gaussian is represented
by values only at the points; (—1,23) , (0,22) and (4+1,22). The area of this
representation can be thought of as the rectangles shown in the figure. The
corresponding volume can analogously be represented with boxes. The volume of
the small boxes is G(#)Aceyr, where Ay = 1 is the area of a unity grid cell. An
approximate value of V' is thus obtained by simply adding the values of G(Z) at
the grid points. The slope of the Gaussian is chosen to be = 3.5. The volume
on the unity grid, computed with the box approximation,is V' & 1.12. This value
of the volume of the Gaussian is larger than the value calculated analytically:
ffooo ffooo exp(—f(2} + 23))dridxs = n/3 = 0.898. This discrepancy is due to
the coarseness of the unity grid. How well this approximation of a pointlike
mass works can be checked against the known solution (%) = iIn(a? 4 23).
An even better agreement with the analytical solution can be achieved by using
V' = 1.142. The approximation of the delta—function represented as a matrix

looks like (i.e. as the approximation looks like on the unity grid):

e~ Bl(z1/Aw)? +(w2/ Ar)?) (66)
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0O - 0 0 0 0 0 -0
0 .-~ 0 0.001 0.03 0.001 0 -0
0 .-~ 0 003 10 003 0 -0 (67)
0 .-~ 0 0.001 0.03 0.001 0 -0
0O - 0 0 0 0 0 -0
0 0 0 0 0 0 0

3.4.3 Refined calculation of &,(¥)

The point mass approximation does not hold inside the radius of a subhalo.
Inside this radius the contribution to the deflection angle from the subhalo must
be recalculated. The refined calculation will be carried out for a square patch
larger than the area covered by the subhalo. The contribution to @gys(Z) from
the subhalo must first be subtracted from the points inside the square patch.
The mass of a pointlike object will only affect the strength of the deflection
potential and not its shape. This can be used to quickly find the contribution
to the deflection angle from a specific point mass. If a point with unity mass,
k(%) = w6%(Z), is placed in the middle of a grid and its boundary values are
exactly specified, then the numerical solution to the problem can be used to
find the contribution from a point with arbritrary mass by just multiplying this
solution with its surface mass density.

After the contribution from the point mass approximation has been removed
from the square patch the exact contribution from that subclump 1s calculated
by equation (45). The size of the square patch depends on the radius of the
subclump under consideration. The formula used to calculate the number of grid

points on the side of the square is Npasen = 2N _reh) + 1} +2N [5 g } ,

§0(Omazx) Az Omaz
where by N [...] is meant the nearest integer. The first term makes sure that
the square patch covers the area of the subclump. The second term scales the
square path with the radius of the clump.

3.4.4 The outcome of the lensing equation

The lens mapping for the simulation region is given by equation (59). With
this lens mapping the images for a given source can be reconstructed. The
source position is calculated for every point in the grid and the grid points that
lie within a specified source are recorded. The area of the image can then be
estimated by the number of grid points corresponding to the source multiplied
with the area of a grid cell. The magnification can then be calculated with
equation (18). The algorithm is written so that it can handle images that do
not lie entirely within the grid. If any of the grid points corresponding to
an image lies on the boundary of the grid, the computation is redone for the
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same substructure configuration but with a 10 % lager grid spacing Az. This
procedure goes on until the whole image 1s covered by the grid. The algorithm
can thus handle multiple images at the expense of poorer resolution.

4 Results of the simulations

4.1 Lensing parameters

The smooth macro model is axially symmetric so that without loss of generality
the source can be assumed to lie on the line § = (y,0) in the lens plane. Conse-
quently the images of the source will lie on the line # = (,0). If 0 < y < 1 then
the lens equation (31) for the SIS becomes y = x + 1. There will then be two
images of the source. One image on opposite sides of the lens. In the case of
y > 1 only one image will occur. This case is of no interest in this paper since
it does not yield any flux ratios.

The source and lens are assumed to be located at redshift z = 3 and z = 1
respectively. A circular source with radius r is used. For all simulations the
velocity dispersion of the macro lens is assumed to be 240 km s~!'. The value
adopted for the Hubble constant is Hy = A - 100 km s~ Mpc~! with A = 0.65.

4.2 Different distributions of substructure

The distribution of substructure favoured by CDM simulations is dN/dm
m~? with 8 = 2. How much does the value of 7 influence the results of the
simulations? In figure 4 the probability distributions of the magnifications for
different values of 3 are plotted. In the upper left and right panels the distri-
butions for the outer and inner images are depicted respectively. In the lower
panel the distributions of difference in image brightness meassured in magni-
tudes are shown. The sets consisting of data for the outer and inner image are
not correlated since they are treated separately. If for every point in the set of
data for the outer image there is associated a point in the set of data for the in-
ner image, it is nevertheless possible to obtain a probability distribution for the
difference in image brightness. The difference in image brightness, meassured
in magnitudes, for every pair of data is calculated by the following formula:
Am = hl(/"outer) - hl(/"inner)~

The distribution of subhalos corresponding to different § can be derived
with the same type of reasoning as used in section 3.3.1. The distributions in
the figure were obtained for 500 simulations. 5% of the host halo mass was
in subhalos of 10*My < m < 103M,. The source coordinate and radius were
y = 0.12 &y(0hato) and r = 10 pc respectively. The vertical dotted lines in
the figure correpond to the results for a point source lensed in the absense of
substructure.

The mass distribution can obviously have a large effect on the observable
Am. As can be seen from the lower panel a change in the exponent [ by
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Flgure 4: Probability distributions of magnifications for different mass distributions. In the left
and right panels are the distributions for the outer and inner image depicted respectively. The
cumulative difference in image brightness measured in magnitudes is shown in the lower panel.
Negative values correspond to the cases when the inner image is brighter. The vertical dotted lines
are the values for a point source lensed by the smooth macro lens in absense of substructure. The
probability distributions in the figure correspond to dN/dm o« m™®. Dashed curve: § = 1.8. Solid
curve: 8 = 2. Dash-dotted curve: 8 = 2.1. Dotted curve: g = 2.3.

more than ~ 10 % would give a rather different probability distribution for the
difference in image brightness.

4.3 Image splitting

A circular source that is lensed by a singular isothermal sphere gives rise, under
certain conditions, to two elliptical images on opposite sides of the lens. The
presence of substructure can cause these images to be splitted once more. The
most notable effect of this secondary splitting will occur for the larger subhalos
since they affect the lensing more than the small ones. A typical situation in
which the outer image is split in two is depicted in figure 5. This situation
occured for a 10 pc source located at y = 0.12 &y(Thaio) in the source plane. 5
% of the halo mass was in substructure of mass 10*Mg < m < 103Mg. In the
figure there are two larger subhalos, with center of mass located nearly at the
origin. If there were no substructure, the center of the image would be located
at the origin. The two large subclumps act as a massive single lens, that splits
the primary image into two secondary images. The distance in the lens plane
between the two primary images is approximately 4500 pc , whereas the distance
between the two secondary images is only approximately 150 pc. If A€ is the
separation of the images in the lens plane and Dy is the angular distance to the
lens, the angular separation A# of the images is A6 = AE/Dy. The lens is at
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Flgure 5: Image splitting caused by substructure. The solid circles mark the substructure. The
size of the grid is indicated by the large solid square. The scale of the grid is £0(0maz) & 54 pc. In
the absense of substructure the image of the circular source would be an ellips centered at (0,0).
The image separation is approximatey 150 pc corresponding to an angular separation of 0.02".

redshift z = 1, which corresponds to Dy = 1.4 - 10° pc. The angular separation
of the primary and secondary images is thus 0.66" and 0.02" respectively. The
separation of secondary images is thus only 3 % of the separation of the primary
images.

It is plausible that only the largest subhalos cause secondary image splitting.
This 18 beacuse smaller subhalos imply a larger number of subhalos, which
in turn implies that the resulting potential is smoother than for a few large
subhalos. If this is the case, then the separation of secondary images could
be used to roughly estimate the mass of the subhalo responsible for the image
splitting.

4.4 Comparison with Metcalf and Madau

Do the results of the simulations agree with the results of Metcalf and Madau?
In figure 6 the cumulative distribution for different forms of substructure and
different source sizes are plotted. The results of Metcalf and Madau for the
same parameters are shown in figure 7. At first sight the results presented in
the two figures do not seem to be consistent. But a closer look at the figures
reveals that, the dependence on the fraction of substructure fy is roughly the
same in both figures. This can be seen by comparing the behaviour of curves
corresponding to the same source size to each other. Thus the dependence of the
fraction of substructure obtained here is roughly the same as the one Metcalf
and Madau obtained. There is however one big difference beteween the curves
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Figure 6: Cumulative probability distributions for different forms of substructure and source sizes.
The Solid curve is the distribution obtained for fs = 5 %, with subclump masses: 10*Mg < m <
108M@ and a 10 pc source. The Dash—dotted curve is the same except that fx = 10 %. The Dashed
curve is the distribution obtained for fx: = 5 %, with subclump masses: 103M® <m < 107M®
and a 1 pc source. The Dotted curve is the same except fx: = 10 % . The position of the sources
was for all curves y = 0.12 €0 (0hato)-
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Flgure 7: The results of Metcalf and Madau, figure 4 in reference [3]. The cumulative magni-
fication distributions for the two images of a SIS lens with source position y = 0.12 measured in
lensing scale lengths. The distribution of image 1 — the primary image or outer image — is plotted
on the left. In the center is the distribution for image 2. On the right the cumulative distribution
of the difference in image brightness measured in magnitudes is shown. Negative values of Am
correspond to the cases where image 2 is brighter than image 1. The vertical dotted lines are the
values expected for a smooth lens and an infinitely small source. The different curves are for dif-
ferent forms of substructure and source sizes. The solid curve assumes that 5 % of the mass is in
subslumps with 104M® <m < 108M@, and a 10 pc source. Dashed line: The same except with
10% of the mass in substructure. Dash—dotted curve: assumes 5 % of the mass in subclumps with
103M@ <m < 107M@, and a 1 pc source. Dotted curve: same as the dash—dotted line only with
10 % of the mass in substructure.
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Flgure 8: Cumulative probability distributions of magnification for different ranges of the mass m
of the subhalos. Solid curve: 104M® <m < 105M@. Dash—dotted curve: 105M® <m < 105M@.
Dashed curve: 105M® < m < 107M@. Dotted curve: 107M® < m < 108M@. The fraction of
substructure is for all curves fx. = 2 %. The radius and position of the source are for all curves 10
pe and y = 0.12 £0(0hato) respectively.

obtained in this paper and in [3], namely the lack of low magnifications in the
former. The absence of low magnification can be explained by the resolution
problem that will be discussed in section 4.5.2. This effect is systematic so that
the probability distributions for the observable difference in image brightness
are almost the same.

In figure 8 the probability distributions for different ranges of masses of
substructure are plotted. In figure 9 the corresponding results of Metcalf and
Madau are shown for comparison. The relations beween the different curves pre-
sented in this paper are essentially the same as the relations between the curves
of Metcalf and Madau. However the distributions for the largest subclumps
10" Mg < m < 108 My, are not at all alike. For some values of the magnification
the curves in [3] are vertical. This implies that the probability of that value
of the magnification is high. This might be an effect that arises when the con-
tribution from many large subclumps are considered. The algorithm used here
can not handle many large subclumps with good resolution of the images. So
that the probability curves for subclumps with mass 10" My < m < 108M, is
obtained with only one or a few subhalos.

4.5 Reliability of the method

This section contains a discussion of the reliability of the results of the simula-
tions and the sensitivity of the results to the simulation parameters.
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Flgure 9: The results of Metcalf and Madau, figure 6 in reference [3]. The cumulative magnifi-
cation distribution for the two images of a 10 pc source with source position y = 0.12. The three
different curves correspond to different subclump mass ranges. Solid line: 104M® <m< 105M@.
Dashed line: 105M® < m < 107M@. Dotted line: 107M® < m < 108M@. The mass fraction
in subclumps, fx, is held fixed at 2 %. The subclumps are progressively more influential as they
get more massive despite their smaller number density. The vertical sections of the dotted curves
are located at the background magnifications — the value of the magnification when there are no
subclumps influencing the image.

4.5.1 Image resolution

How reliable is the method used to compute the magnification of the source?
The magnification is given by the ratio of the image and source areas. The
number of grid points N found to correspond to a given source and the area of
the grid cells are used to calculate the area of the image. If the number of grid
points N increases, the error in the calculation of the area should decrease. In
practice the total number of gridpoints is held fixed, so that a higher resolution
of the images is obtained by shrinking the area of the grid cells. When counting
the number of gridpoints corresponding to images the error is expected to be
~ V/N. The relative error in N is thus, AN ~ /N/N = N='/2_ In figure 10
the relative error for the magnification of the outer image of a SIS is plotted
versus N. The relative error was computed under the assumption that the true
magnification is the same as for a point source ppo;n:. The relative error is then
Ap = pfptpoint — 1. As can be seen from figure 10 the relative errors in the
magnification are somewhat lower than expected, but follows the curve nicely.
This is due to the fact that the source is extended. The magnification of an
extended source p. is smaller than the magnification of a point source. This
implies that p/pe > pt/fpoine and (Ap)e > (Ap)point. The points in the figure
therefore represent a lower limit of the relative error. From the distribution
N~1/2 it can be seen that ~ 400 points is sufficient to compute the magnification
with an accuracy of ~ 5 %. The grid spacing Az must thus be carefully chosen
so that N is large enough even for small magnifications, i.e. relatively small
images.
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Flgure 11: The influence of grid spacing Az on the probability distributions of magnifiacations.
The distributions were obtained for; fs; = 10 %, y = 0.12 £0(0hato) , 7 = 10 pc and the mass range
were 10°Mg < m < 107M@. The upper left and right panels show the cumulative distributions
for the outer and inner image respectively. In the lower panel the cumulative distributions for
the difference of image brightness measured in magnitudes are shown. Solid curve: Az = 0.005
corresponding to ~ 10 subclumps . Dashed curve: Az = 0.01 corresponding to ~ 20 subclumps.
Dash—dotted curve: Az = 0.02 corresponding to ~ 30 subclumps.
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4.5.2 The size of the grid

In section 4.5.1 the resolution of individual images was discussed. The question
in this section is how the size of the grid (i.e. the resolution) affect the statistics
of a large number of simulations? If all lensing parameters but the grid spacing
Az 1s kept fixed how will it affect the probability distributions? A larger value
of the grid spacing Az implies a larger grid, which contains more mass and more
substructure. In figure 11 the cumulative probability distributions for different
values of Az are shown. In the upper left and right panels the distributions
for the outer and inner image are plotted respectively. In the lower panel the
cumulative distribution of the difference in image brightness of the different
images measured in magnitudes is plotted. As can be seen from the figure, the
grid spacing do affect the result. The larger the grid spacing is, the larger is the
spread in the distribution. For small values of the grid spacing the probability
for small and large magnifications is suppressed. The most important thing
to note here is that an increasing number of subhalos implies an increasing
probability of small magnifications. This might be an explanation of the lack of
small magnifications for the largest subhalos found in section 4.4.

Why is the probability distributions of magnifications affected by the size
of the grid? If the grid is to small, then the substructure just outside the grid
can not be approximated with a smooth potential. The grid must be so large
that the contribution to the lensing potential from any substructure outside the
grid can be treated as a part of the smooth host halo. For subclumps that are
small compared with the image this should not be a problem. If the subclumps
are large compared to the image, then the need for a sufficiently large grid will
be in conflict with the need for good resolution. If the grid is small and the
subclumps are large, then the grid can only contain one or a few subclumps.
The method used for generation of substructure does not allow for the possibility
that the grid may be under— or over dense compared to the average distribution
of subclumps. If the simulation region can be under— or over dense, then the
spread in the distribution of magnifications should be larger. Another possibility
that arises when the number of subclumps rises 1s that the contributions to the
deflection potential from each subclump may to some extent cancel out. The
distributions should then tend to the smooth case.

4.5.3 Statistics

If several simulations are made for the same simulation parameters, then it 1s
possible to obtain probability distributions for the magnification in the pres-
ence of substructure. A question that naturally arises is, how many simulations
are needed to obtain good statistics? In figure 12 the cumulative magnification
distributions obtained for 500, 1000 and 5000 simulations are compared to the
distribution obtained for 10000 simulations. In the upper left panel the distri-
bution obtained for 500 and 10000 simulations are drawn. With the data from
500 simulations it is possible to recover the charateristic shape of the probabil-
ity distribution. As can be seen from the upper right panel the distrubution
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Flgure 12: Comparison of the magnification distributions for different number of simulations.
The solid line corresponds to the magnifaction distribution obtained for 10000 simulations. The
dotted line in the upper left and right panels corresponds to the distribution obtained for 500 and
1000 simulations respectively. In the lower panel the distribution for 5000 simulations is plotted as a
dotted line. The vertical dashed line in the figures shows the magnification for a point source lensed
by a SIS. 500 simulations seem to be enough to get a rough estimate of the probability distribution.
The distributions based on more than 1000 simulations deviates only a little from each other.

obtained for 1000 simulations i1s quite good. In the lower panel the distribution
for 5000 and 10000 simulations are plotted. The agreement betweeen these two
curves 1s execellent. From the above discussion it is clear that ~ 500 simulations
can be used to get a quick estimation of the probability distributions. If a more
accurate distribution is neded more than 1000 simulations are necessary.

5 Conclusions

In the above it has been shown that a small change in the distribution of subhalos
would give a significant change in the probability distributions of magnifications.

The simulations have also shown that substructure can cause secondary split-
ting of the images. The expected separation of the secondary images is of the
order of 10 milli—arcseconds. If the splitting can be observed it could be used
to estimate the mass of the substructure.

The results presented in this paper are consistent with the results of Metcalf
and Madau except for the largest subhalos. The discrepancies between the
probability distributions of magnifications can probably be explained by the fact
that the method presented here 1s not capable of dealing with large subclumps.

There are two solutions to the problem of simulating gravitational lensing
with large subhalos. The first one is to increase the number of grid points. This
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has the advantage that it will give very good estimates of the magnification for
each simulation and it allows much more substructure. The obvious disadvan-
tage is of course that the simulations will take longer time to perform. The
other approach is to distribute the substructure over a grid that is larger than
the one that is actually used. The larger grid could obviously contain more
substructure than the small one. The mean density of substructure should be
the same on the smaller grid, but there is also the possibility that the smaller
grid is denser than it is on average. In that case it contains more substructure,
which is good. This approach should reflect a more realistic model, then the
one used in this paper. For small subclumps there is no difference, but for the
large ones there should be a difference between the two models. Keeping track
of more substructure than necessary might be a burden for the computer, why
it should be used only when necessary.

It would also be interesting to use more realistic models for the macro model
and the substructure. The approximation with point masses can be done outside
all truncated spherically symmetric mass distributions, so the basic ideas of the
method can still be used.
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