Early Universe Particle Physics

Joakim Edsjö edsjo@physto.se

2005-09-14

Outline

- Introduction to the Standard Model for particle physics
- Introduction to supersymmetry and the Minimal Supersymmetric Standard Model (MSSM)
- Grand Unified Theories (GUTs).
- Thermal relics: freeze-out

What is matter?

The Standard Model

Quarks

First family	s=1/2	Q=+2/3 U	s=1/2	d	Q=-1/3
Second family	s=1/2	Q=+2/3 C	s=1/2	S	Q=-1/3
Third family	s=1/2	Q=+2/3 t	s=1/2	b	Q=-1/3

The Standard Model

Leptons

			Q=0			Q=-1
First family	- 1/2	Ve			е	
	s=1/2		2. A. MAN AA	S-1/Z		
Second			Q=0			Q=-1
		$ u_{\mu}$			μ	
lanny	s=1/2			s=1/2		
			Q=0			Q=-1
Third family		ν_{τ}			τ	
	s=1/2			s=1/2		

Quantum numbers

- In addition to conserved classical quantities like momentum and angular momentum, quantum mechanics allows for more conserved quantities, quantum numbers
- Examples are
 - spin (arising from rotational invariance)
 - electric charge (arising from gauge invariance)
 - lepton number

Baryons and mesons

Baryons

- three quarks
- baryon number = I
- Examples:

p = uudn = udd

- one quark + one antiquark
- baryon number = 0
- Examples:

$$\pi^{0} = (u\bar{u} + d\bar{d})$$
$$\pi^{+} = u\bar{d}$$

What else is there?

- Quarks and leptons have spin 1/2 (in units of h/2π), and are called fermions.
- They are the building blocks of matter
- What makes them talk to each other?

Interactions

Interaction	Charge	Force carrier
Electromagnetic	Electric charge	Photon, y
Weak	Weak isospin	₩±, Z ⁰
Strong	Colour	Gluon, g

Force carriers

Force carrier	Charge	Spin	Mass
Photon, y	0	l	0
Z ⁰	0		91 GeV
W±	±١		80 GeV
g	0		0

Interaction strengths

Interaction	Coupling constant
Electromagnetic	$\alpha_{\rm em} = \frac{e^2}{4\pi} \sim \frac{1}{137}$
Weak	$\alpha_{\rm weak} = \frac{3}{5} \frac{\cos^2 \theta_W}{\sin \theta_W} \alpha_{\rm em} \sim 2.47 \alpha_{\rm em}$
Strong	$\alpha_{\rm s} = \frac{g_s^2}{4\pi} \sim 0.3$

Why three families?

Measurement of the Z width at LEP shows that there are three neutrino families

Why are particles massive?

- Current belief is that a scalar field, the Higgs field, is required to give mass the Z⁰,W[±] and the quarks and leptons.
- When particles move in this background field, the "drag" from the field will appear as a mass.

Tests of the Standard Model

At LEP @ CERN, extensive tests of the standard model has been made in e⁺ e⁻ collissions.

Delphi, one of the detectors at LEP.

LHC coming up in 2007!

Feynman diagrams Example of EM cross section estimate

The particle physics model can be formulated as a set of Feynman rules, which makes cross section calculations relatively easy

 $e = \sqrt{4\pi\alpha}$

$$s = (p_1 + p_2)^2 = E_{\rm CM}^2$$

Feynman diagrams Example of weak cross section estimate

The particle physics model can be formulated as a set of *Feynman rules*, which makes cross section calculations relatively easy

 $e = \sqrt{4\pi\alpha}$

$$s = (p_1 + p_2)^2 = E_{\rm CM}^2$$

Spin quantization

- Due to quantization of angular momentum, a particle of spin s can only have 2s+1 different spin components (along an arbitrary axis)
- E.g., a spin 1/2-particle can have two different spin directions:
 - ↑ Spin up ↓ Spin down
- A (massive) spin I-particle can have three different spin directions:
- ↑ Spin up → Spin sideways ↓ Spin down

Degrees of freedom in the Standard Model

 Each spin state, colour and antiparticle state can be viewed as a separate particle and will contribute to the available degrees of freedom.

Particle	Degrees of freddom (d.o.f.)	Sum of d.o.f.
Charged lepton	2 × 2 = 4	4 × 3 = 12
Neutrinos	2 (only left-handed)	2 × 3 = 6
Quarks $2 \times 3 \times 2 = 12$		12 × 6 = 72
Total num	12 + 6 + 72 = 90	

Why supersymmetry?

- The Standard Model is highly successful in describing observations.
- However, we can make though experiments at higher energies, where the Standard Model breaks down, cross sections going to infinity could occur e.g.
- Adding a symmetry between fermions and bosons restores these problems.
- String theory also seems to need supersymmetry to be consistent.

Short introduction to supersymmetry

- In the simplest models, add one superpartner for every standard model particle (N=I)
- The superpartners have the same properties as their standard model counterpart, except for the spin that differs by 1/2
- At low energies, supersymmetry must be broken (otherwise, the masses would be the same as the standard model particles). There are many different scenarios for how supersymmetry breaking could have occurred.
- Examples:

a) The Minimal Supersymmetric Standard Model, MSSM.b) Minimal SUGRA, mSUGRA

The supersymmetric mass spectrum

Normal particles/fields		Supersymmetric particles/fields			
		Interaction	eigenstates	Mass eig	jenstates
Symbol	Name	Symbol	Name	Symbol	Name
= d, c, b, u, s,	quark	$\widetilde{q}_L, \widetilde{q}_R$	squark	$\widetilde{q}_1,\widetilde{q}_2$	squark
$l=e,\mu, au$	lepton	l_L, l_R	slepton	l_1, l_2	slepton
$ u = u_e, u_\mu, u_ au$	neutrino	$\widetilde{ u}$	sneutrino	$\widetilde{ u}$	sneutrino
$g_{ m opt}$	gluon	\widetilde{g}	gluino	\widetilde{g}	gluino
W^{\pm}	W-boson	$ ilde W^{\pm}$	wino	$\tilde{\chi}^{\pm}$	charaina
H^{\pm}	Higgs boson	\tilde{H}^{\pm}	Higgsino	$\lambda_{1,2}$	chargino
B	B-field	$ ilde{B}$	Bino		
W^3	W_field	$ ilde W^3$	Wino		
H_1^0	Higgs boson	$ ilde{H}^0_1$	Higgsino	$\widetilde{\chi}^0_{1,2,3,4}$	neutralino
H_2^0	Higgs boson	<u>1</u> -~-0			
H_3^0	Higgs boson	H_{2}^{0}	Higgsino		

The lightest neutralino is a good dark matter candidate!

The MSSM parameters

- The general MSSM includes the most general N=I supersymmetry Lagrangian that does not break R-parity, B-L, etc. It includes 124 free parameters
- Many ways to break supersymmetry exists. In a phenomenological model, the MSSM, we usually pick 7 parameters.

μ	Higgsino mass parameter
M_2	Gaugino mass parameter
m_A	Mass of CP-odd Higgs boson
$\tan\beta$	Ratio of Higgs vacuum expectation values
m_0	Scalar mass parameter
A_b	Trilinear coupling, bottom sector
A_t	Trilinear coupling, top sector

The mSUGRA parameters

- An alternative to MSSM is the GUT-inspired mSUGRA-model.
- Fix mass parameters at GUT scale and run RGEs to low energy scale. Usually we pick 5 parameters in this model.

$\operatorname{sgn}(\mu)$	Sign of Higgsino mass parameter
$m_{1/2}$	Gaugino mass parameter (at GUT scale)
$\tan\beta$	Ratio of Higgs vacuum expectation values
m_0	Scalar mass parameter (at GUT scale)
A	Trilinear coupling (at GUT scale)

Grand Unification

Standard Model

Thermodynamics in the Early Universe

In the Friedmann Lemaitre Robertsson Walker metric with a flat universe (Ω =1), we have the Friedmann equation

$$H^2(t) = \frac{8\pi G\rho}{3}$$

A very good approximation is that the relativistic particles contribute mostly to ρ . Can we calculate ρ from thermodynamics?

Equilibrium thermodynamics

The distribution function is given by

$$f_i = \frac{1}{e^{\frac{(E_i - \mu_i)}{T}} \pm 1}$$

The number density is given by

$$n_i = \frac{g_i}{(2\pi)^3} \int f_i(\mathbf{p}) d^3 p$$

g =internal degrees of freedom and the energy density is

$$\rho_i = \frac{g_i}{(2\pi)^3} \int E_i(\mathbf{p}) f_i(\mathbf{p}) d^3 p$$

bosonsfermions

The energy and number densities

Energy density

Number density

Figure 7.1: The energy (a) and number density (b) for fermions and bosons, as a function of T/m. The quantities have been normalised to the relativistic expressions for bosons, $n_R(BE) = \frac{\zeta(3)}{\pi^2} g_i T^3$ and $\rho_R(BE) = \frac{\pi^2}{30} g_i T^4$, respectively.

For non-relativistic particles, the distributions are the same for fermions and bosons.

Figure from Bergström and Goobar, Cosmology and Particle Astrophysics

Equilibrium distributions non-relativistic limit

In the non-relativistic limit, the integrals can be solved analytically with the result (valid for both bosons and fermions)

$$n = g_i \left(\frac{mT}{2\pi}\right)^{\frac{3}{2}} e^{-\frac{m}{T}}$$

 $\rho = mn$

 $p = Tn \ll \rho$

Equilibrium distributions ultra-relativistic limit

In the ultra-relativistic limit, the integrals can be solved analytically with the result

$$n_{\text{bosons}} = \frac{\zeta(3)}{\pi^2} g_i T^3 \quad ; \quad \zeta(3) \simeq 1.20$$

$$n_{\text{fermions}} = \frac{3}{4} \left(\frac{\zeta(3)}{\pi^2} g_i T^3 \right) \quad ; \quad \zeta(3) \simeq 1.20$$

$$\rho_{\text{bosons}} = \frac{\pi^2}{30} g_i T^4$$

$$\rho_{\text{fermions}} = \frac{7}{8} \left(\frac{\pi^2}{30} g_i T^4 \right) \qquad p = \frac{1}{3} \rho$$

Put into the Friedmann equation

Considering only the relativistic species, we can write

$$\rho = \frac{\pi^2}{30} g_{\text{eff}}(T) T^4 \quad ; \quad p = \frac{1}{3} \rho = \frac{\pi^2}{90} g_{\text{eff}}(T) T^4$$
$$g_{\text{eff}} = \sum_{i=\text{bosons}} g_i \left(\frac{T_i}{T}\right)^4 + \frac{7}{8} \sum_{i=\text{fermions}} g_i \left(\frac{T_i}{T}\right)^4$$

 $m_{
m Pl}$

Inserting this into the Friedmann equations gives

$$H^{2}(t) = \frac{8\pi G\rho}{3} = \frac{8\pi G}{3} \frac{\pi^{2}}{30} g_{\text{eff}} T^{4} \simeq 2.76 g_{\text{eff}} \frac{T^{4}}{m_{\text{P}}^{2}}$$
$$H = 1.66\sqrt{g_{\text{eff}}} \frac{T^{2}}{m_{\text{P}}^{2}}$$

Time and geff

During radiation domination, we have that

$$a(t) \sim \sqrt{t}$$

Hence, we get $H = \frac{\dot{a}}{a} = \frac{1}{2t}$

Which gives

$$t = 0.30 \frac{m_{\rm Pl}}{\sqrt{g_{\rm eff}}T^2}$$

 $\left(\text{Around 1 MeV this becomes } t \sim \left(\frac{1 \text{ MeV}}{T} \right)^2 \text{sec} \right)$

What is geff

As an example, calculate g_{eff} at a temperature of I TeV, i.e. where all Standard Model particles are relativistic. From earlier we know that $g_{tot} = 90$ for the fermions. For the remaining particles, we get

Particle	D.o.f.	
Z ⁰	3	
W±	6	
γ	2 (no transvere pl.)	
g	8 × 2 = 16	
H_{M}		
Sum	28	

 $g_{\text{eff}}(T = 1 \text{ TeV}) = 28 + \frac{7}{8}90 = 106.75$

Entropy

The entropy in a comoving volume $a^{3}(t)$ is conserved and one can show that the entropy density is

$$s(T) = \frac{\rho(T) + p(T)}{T}$$

For ultra-relativistic particles, we can then write

$$s = \frac{2\pi^2}{45} g_{\text{eff}}^s T^3$$
$$g_{\text{eff}}^s = \sum_{i=\text{bosons}} g_i \left(\frac{T_i}{T}\right)^3 + \frac{7}{8} \sum_{i=\text{fermions}} g_i \left(\frac{T_i}{T}\right)^3$$

Example Neutrino decoupling I

A typical weak interaction cross section (for eg. neutrinos) is

 $\sigma \sim rac{lpha^2 T^2}{m_W^4}$ (s ~ T²)

This gives the interaction rate

$$\Gamma = (\sigma v)n \sim \frac{\alpha^2 T^5}{m_W^4}$$

Which should be compared with the expansion rate

$$H \sim \frac{T^2}{m_{\rm Pl}}$$

Example Neutrino decoupling II

When $\Gamma > H$, the neutrinos are kept in chemical equilibrium, but when $H > \Gamma$, equilibrium can no longer be sustained and the neutrinos freeze-out. This happens when

$$\Gamma \sim H \Rightarrow \frac{\alpha^2 T^5}{m_W^4} \sim \frac{T^2}{m_{\rm Pl}}$$

I.e., when

$$T_{\rm dec} \sim \left(\frac{m_W^4}{\alpha^2 m_{\rm Pl}^2}\right)^{\frac{1}{3}} \sim 4 \,\,{\rm MeV}$$

After this, the neutrinos are no longer in equilibrium.

Example

Neutrino decoupling III

The neutrinos that were present at freeze-out, $T_{dec} \sim 4$ MeV, are present still today and we can calculate the contribution to the current energy density.

The abundance,

$$r = \frac{n}{s}$$

is conserved (as both s and n goes as T^3) and we get

 $Y(\text{today}) = Y(T = T_{\text{dec}})$

 $n(\text{today}) = s(\text{today})Y(T = T_{\text{dec}})$

Putting in numbers for s, ρ etc we can get

$$\Omega_{\nu}h^2 \sim \left(\frac{\sum m_{\nu}}{90 \text{ eV}}\right)$$

$$\Omega = \frac{\rho}{\rho_{\rm crit}}$$

Relic density

simple approach for non-relativistic matter

WIMP candidates

- Any weakly interacting massive particle could in principle work
- In supersymmetric extensions of the standard model, the lightest neutralino arises as a natural dark matter candidate. Will focus on this candidate as a concrete example.
- Other examples are e.g. Kaluza-Klein particles.

The neutralino as a WIMP

The neutralino:

$$\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W}^3 + N_{13}\tilde{H}_1^0 + N_{14}\tilde{H}_2^0$$

The neutralino can be the lightest supersymmetric particle (LSP). If R-partity is conserved, it is stable.

The gaugino fraction

 $Z_g = |N_{11}|^2 + |N_{12}|^2$

Calculational flowchart

- I. Select model parameters
- 2. Calculate masses etc
- 3. Check accelerator constraints
- 4. Calculate the relic density $\Omega_{\chi} h^{2}$
- 5. Check if the relic density is cosmologically OK
- 6. Calculate fluxes, rates, etc

Calculation done with

The relic density

 $\Omega_{\chi}h^2 = 0.103^{+0.020}_{-0.022}$

from WMAP+SDSS M.Tegmark et al., astro-ph/0310723

DarkSUSY 4.1 available on www.physto.se/~edsjo/darksusy astro-ph/0406204 JCAP 07 (2004) 008

References and further reading

• Lars Bergström and Ariel Goobar, Cosmology and Particle Astrophysics, chapter 6-8.

• E.W. Kolb and M. S. Turner, The Early Universe.