Modern Cosmology 2005 Exercise set 3

To be solved in exercise session 3

1. Radioactive dating

The abundance ratio of unstable Thorium (half-life 14.5 Gyr) to stable Europium in a star is measured to be n(Th)/n(Eu) = 0.27, whereas stellar nucleosynthesis predictions suggests that the star should have formed with a ratio of n(Th)/n(Eu) = 0.50. The Thorium hence appears to have depleted due to radioactive decay. Use the measured and predicted abundance ratios to infer a lower limit to the age of the Universe.

2. Big Bang Nucleosynthesis (BBNS)

Estimate the ⁴He abundance (mass fraction of baryons in the form of ⁴He) expected from BBNS, assuming that after proton-neutron freezeout, every neutron was used up in the production ⁴He nuclei. You may for simplicity assume that the neutron-to-proton ratio stayed constant at a value of $N_{\rm n}/N_{\rm p} \approx 0.13$ throughout the BBNS epoch.

3. Dark matter in disk galaxies I

A disk galaxy at a redshift of z = 0.0020 displays an apparent magnitude of $m_{\rm B} = 11.1$ and the inclination-corrected rotation curve shown in Fig. 1. Use this data to set a lower limit to the mass and mass-to-light ratio $M/L_{\rm B}$ (in units of $\frac{M_{\odot}}{L_{\rm B,\odot}}$) of this system, and a lower limit to the contribution from dark matter to the total mass, given that models indicate that the mass-to-light ratio of the visible component should be $M/L_{\rm B} \approx 2$. You may find it useful to know that $M_{B,\odot} = 5.48$.

4. Gravitational lensing

Dark halo substructure can in principle be detected by its gravitational lensing effects (so-called meso- or millilensing) on background light sources. If the substructures are approximated to be point-masses of mass $M_{\rm sub}$, the image-splitting angle can be estimated from the angular Einstein radius

$$\theta_{\rm E} = \left(\frac{4GM_{\rm sub}D_{\rm ls}}{c^2D_{\rm ol}D_{\rm os}}\right)^{1/2},\tag{1}$$

where $D_{\rm ls}$, $D_{\rm ol}$ and $D_{\rm os}$ are the angular size distances between lens and light source, observer and lens, observer and light source, respectively. Calculate the image separation angle (in arcseconds) for a light source at z = 2, produced by a dark subhalo of mass $M = 10^7 M_{\odot}$ located at

- a) a redshift of z = 0.5
- b) a redshift of z = 1.0
- c) a distance of 100 kpc (Note: This is inside the dark halo of the Milky Way!)

5. High-redshift light sources I

Compare the hydrogen-ionizing luminosity of a 1000 M_{\odot} population III star to that of a 100 M_{\odot} population I star, assuming that both exhibit black body spectra. You may assume that the population III star has a bolometric luminosity of $\log(L/L_{\odot}) = 7.45$ and an effective temperature (K) of $\log T_{\rm eff} = 5.05$, whereas the population I star has $\log(L/L_{\odot}) = 6.10$ and $\log T_{\rm eff} = 4.74$.

6. High-redshift light sources II

For a light source at redshift z, the apparent magnitude m in a given filter is related to the absolute magnitude M in the same filter through:

$$m = M + 5\log_{10}\left(\frac{d_{\rm L}}{1\,\,{\rm Mpc}}\right) + 25 + k \tag{2}$$

where $d_{\rm L}$ is the luminosity distance to the object and k is the cosmological k-correction, which takes into account that the light observed at a certain wavelength (i.e. in a certain filter) on Earth was emitted at a much shorter wavelength, because of the redshift. In the case of a light source with a power-law spectrum $(f_{\nu} \propto \nu^{-\alpha})$, k is given by:

$$k = (\alpha - 1) \times 2.5 \log_{10}(1 + z). \tag{3}$$

Use this information to estimate the K-band (mean $\lambda = 2.2 \times 10^{-6}$ m) apparent magnitude for a z = 5.5 quasar with an absolute K-band magnitude of $M_K = -25$ and a power-law spectrum with $\alpha = 0.5$.

Hand-in exercises (deadline November 11)

7. Dark matter in disk galaxies II

Modified Newtonian Dynamics (MOND) has been suggested to explain the rotation curves of disk galaxies without the need for dark matter. MOND postulates that:

$$\mu\left(\frac{a}{a_0}\right)a = \frac{MG}{R^2},\tag{4}$$

where a is the gravitational acceleration, a_0 is a constant introduced by MOND, and μ is an interpolation function with the property that $\mu(x) \approx 1$ for x >> 1 and $\mu(x) \approx x$ for x << 1. In the limit of small accelerations (x << 1), the MONDian acceleration is given by:

$$a = \sqrt{a_{\rm N} a_0},\tag{5}$$

where a_N is the usual Newtonian acceleration. One possible way to test MOND is to check to what extent kinematic data from different systems really can be fitted with the same value of a_0 . Use the disk-galaxy data presented in exercise 3 to test to what extent this object can be reconciled with $a_0 \approx 1.2 \times 10^{-10} \text{ ms}^{-2}$, which is the value for a_0 suggested by most previous attempts to fit galaxy data with MOND. Treating the galaxy as a point-mass is OK as long as you use the data in a way that minimizes the errors introduced by this approximation.

8. High-redshift light sources III.

With the James Webb Space Telescope (JWST; to be launched ~2011), it should be possible to detect objects as faint as $m_K = 27.4$ in the K-band (mean $\lambda = 2.2 \times 10^{-6}$ m). At low redshifts, most quasars have intrinsic, absolute B-band (mean $\lambda = 4400$ Å) magnitudes of $M_B \approx -23$ and colours of $M_B - M_K \approx 2.5$.

a) Make a rough estimate of the highest redshift at which such objects can be seen with the JWST in the K-band, assuming the quasars to have power-law continua with $\alpha = 0.5$.

b) Is it really realistic to expect to detect quasars of this luminosity up to the derived redshift limit with JWST in the K-band? Hints: What are the implicit and explicit assumptions going into the calculation? Will they break down at some redshift? Why?

Erik Zackrisson, October 2005

Figure 1: The rotation curve of a disk galaxy, projected to edge-on orientation.