Nucleosynthesis in the Early Universe

Bengt Gustafsson PhD course in Cosmolgy grad U 2005

Outline

- Historical remarks
- Basic physics
- Predictions from theory
- Observations
- Remaining problems
- Out of dark age
- Future?

George Gamow (1904-68) Ralph Alpher (1921 -) Robert Herman (1914-97)

Alpher, Bethe and Gamow (1948), Phys. Rev.Alpher, Herman and Gamow (1948-49), Phys Rev.

Alpher, Herman and Gamow:

Early universe made of neutrons $n \rightarrow p + e + \underline{v}_e$ U will cool so that heavy elements do not disintegrate. Obs of abudances of light elements require $N_{\gamma}/N_B = 10^9 =>$ 5K present background radiation. Improved as regards v processes etc by C. Hayashi (1950) and Alpher, Herman and Follin Jr. (1953).

NASA G-68-10,414

A frustrated continuation

- None of these people set out to discover the radiation (could technically have been done during the 50'ies). Alpher and Herman do not discuss it further.
- Gamow repeats the prediction but on fallacious grounds 1953. These were out for a greater goal!
- Dicke and Peebles start trying obs. in early 60:ies.
- Penzias and Wilson happen to discover it in 1965.
- Wagoner, Fowler and Hoyle make first detailed predictions of BB nucleosynthesis 1967.
- For further details, see S. Weinberg: *The first three minutes*, Chapter VI.

Basic physics

(a) Dynamics of the expansion

Isotropy, homogeneity => Robertson-Walker metric: $H^2 = [1/a (da/dt)]^2 = 8\pi/3 \text{ Gp} - k c^2/a^2 + \Lambda/3$

Non-relativistic conserved particles: $n \sim a^{-3}$ Relativistic particles: $n \sim a^{-4}$

Early on, radiation dominated universe: $H^2 \approx 8\pi/3 \text{ Gp}_R$, integrate: $32 \pi/3 \text{ Gp}_R t^2 = 1$ (1) $\rho_R \sim T^4 \implies T \sim t^{-1/2}$. Note that the total number density of all relativistic particles, known and unknown, are in play here!

After 1s: $kT \sim 1 \text{ MeV}, T \sim 10^{10} \text{ K}.$

Basic physics

(b) Particles

like e⁻, e⁺, ν_e , $\underline{\nu}_e$, γ , a few p, n, ...

- $n + e^+ < --> p + \underline{v}_e$
- $n + v_e < --> p + e^{-}$
- $n < --> p + e^- + v_e$ (half life 887 s)

In equilibrium: $N_n/N_p = \exp[-\Delta mc^2/kT] = \exp[-1.5x10^{10} \text{ K} /T]$ (2)

Equilibrium?

Equilibrium?

Typical density of photons: $n_{\gamma} \approx 10^{-7.5} \text{ T}^{3}(\text{MeV}) \text{ f}^{-3}$ (1f =10⁻¹³ cm).

Length scale: $l_{\gamma} \approx 300 \text{ T}^{-1} \text{ (MeV) } f \approx l_e \approx l_v$.

Quite dilute! Nucleons (p and n) at hundred times greater distance. Causal horizon scale: 10²¹ times larger!

Typical reaction rates (weak interaction):

 $R_{WI} \approx (T/10^{10.135} \text{ K})^5$ (3)

Thus, R_{WI} drops very rapidly with T.

At expansion, the weak interactions are suddenly swiched

off; "neutron freeze out".

Comparison between expansion rate (1) and R_{WI} gives

freeze out around 1 MeV $<-> 10^{10}$ K, t ≈ 1 s.

What is then the neutron density?

(2) => $N_n / N_p \approx 1/7$.

Another freeze out:

Weak interaction reactions also keep *neutrinos* in equilibrium; The last important reaction is

 $v + \underline{v} < --> e^- + e^+$

Neutrinos freeze out (decouple) at somewhat higher T (matrix element² for nuclear interaction x5 due to axial coupling), at about $3x10^{10}$ K. Must be taken into account in detailed calculations.

Neutrino background forms. Electron gas keeps interacting with photons,

 $e^- + e^+ < - > \gamma + \gamma; \quad e + \gamma < - > e + \gamma.$

When T < 1.03 MeV, pair production stops, annihilations heat photon gas and $T_{\gamma}/T_{\nu} \rightarrow (11/4)^{1/3}$. Presently 400 microwave photons per cm³, 109 neutrinos per cm³.

What happens to the neutrons?

Nuclear reactions:

Neutrons react with protons -- in time before decay?

$$n + p \rightarrow ^{2}D + \gamma$$

²D binding energy
$$\chi = 2.225$$
 MeV

$$m_e c^2 = 0.52 \text{ MeV}; m_n - m_p = 1.31 \text{ MeV}.$$

But photon/baryon ratio is high (~ 10¹⁰) so that photons disintegrate D:s efficiently below T=2.225 MeV.

Saha equation:

 $N_d/N_p = N_n \operatorname{const} T^{-3/2} \exp(\chi/kT).$ N_d stays low until crossover at about $T \approx 10^{8.9}$ K. This is after about 3 minutes = 180 s. Exact integration (including n decay) gives $N_n/N_p \approx 0.163 \ (\Omega_B h^2)^{0.04} \ (N_v/3)^{0.2}$ (4) What happens with the days

What happens with the deutrons?

Further reactions:

 $^{2}D(n, \gamma)^{3}H$, $^{2}D(d, p)^{3}H$ $^{2}D(p, \gamma)^{3}He$, $^{2}D(d, n)^{3}He$ $^{3}\text{He}(n, p)^{3}\text{H}$, $^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + v_{e}$ 3 He(n, γ) 4 He, 3 H(d, n) 4 He, 3 He(3 He, 2p) 4 He To calculate: a system of ordinary diff. equations. In equilibrium, one may show that $N_{Z,A} = f(Z,A) T^{-3(A-1)/2} N_p^Z N_n^{(A-Z)} exp(\chi/kT)$ (5) ⁴He is favoured by large χ , however higher A disfavoured by A dependence of f and T term.

The evolution of nuclear abundances in the standard Big Bang model. From Burles, Nollett and Turner (1999), here assuming $\Omega_B h^2 = 0.029$.

Still further reactions:

Coulomb barriers (exp (χ/kT) in (5)), the cooling universe and no stable nuclei at A=5 and 8 prevent higher elements to form. However, ⁴He(³H, γ)⁷Li ⁴He(³He, γ) ⁷Be(e⁻, ν_e)⁷Li ⁷Li(p, α) ⁴He give traces of ⁷Li and some ⁷Be.

Predictions from theory and observed abundances of light elements. $N_v = 3$.

$N_v?$

Increase in N_v increases expansion rate (ρ_R in (1)). Then more n survive until nucleosynthesis starts => greater He abundance. Experimental limit, LEP (Cern): Z by e⁺e⁻ collisions, energy width of Z => N_v = 2.984 ± 0.008 (2001)

From BB + He abundance: $N_v = 3 \pm 0.3$. A victory (1990)!

Constraints on other particles, see below!

Discussion of abundances: ²D

- ²D starts growing by $p(n,\gamma)^2D$, rather late due to photodisintegration
- ²D is then consumed by ²D+p etc.
- ²D decreases in proportion to $\eta^{-1.7}$ due to incr. two-body collisions.
- ²D is not easy to observe spectroscopically, and is also destroyed in stars, but

not made!

Observations of ²D

- Only upper limit to η
- Measurement in low metallicity clouds seen against distant quasars
- <= Levshakov et al. (2002) Q 0347-3819, z_{abs}= 3.02
- Complex velocity structures of clouds. Isotope shifts hard to distinguish from velocityshifted H.
- Conflicting results, like
 3.10⁻⁵ <D/H< 4.10⁻⁵ or
 10.10⁻⁵ <D/H< 20.10⁻⁵

Discussion of abundances, ³He

³He is produced by D+p -> ³He, then ³He+n -> ⁴He
³He rizes as ⁴He but is always less due to lower binding energy (7.72 MeV and 28.3 Mev, respectively).

³He pressure sensitive as is ²D.but less so due to higher binding energy.

³He is produced in stars by ²D burning, ³He + ²D = unchanged.

Discussion of abundances, ⁴He

High binding energy => almost all remaining n goes into ⁴He. Simple counting arguments:

- $Y \approx 2(N_n/N_p)/[1+(N_n/N_p)] = 0.25 \text{ for } N_n/N_p = 1/7.$
- Y changes little with time in the Galaxy.

$$Y=Y_p+\delta Y/\delta Z \Delta Z$$

- I Zwicky18
 O/H ≈ 0.02 solar
- Several recent bursts, the most recent about 4 10⁶ years ago, oldest about 500 · 10⁶ years,

Discussion of abundances, ⁴He, cont.

Y=Y_p+ δ Y/ δ Z ΔZ δ Y/ δ Z estimated from gaseous nebulae in Blue Compact Galaxies

E.g. Izotov & Thuan (2004) => $\delta Y/\delta Z = 3.7 \pm 1.2 =>$

 $Y_p = 0.242 \pm 0.002.$ Other groups get lower values, such as 0.234 ± 0.003 , Peimbert et al. (2000)

Discussion of abundances, ⁷Li

At low η (< 3·10⁻¹⁰) ⁷Li is produced by ⁴He(³H, γ)⁷Li and burned away by ⁷Li(p, α)⁴He. For greater η the production channel ⁷Be(e⁻, v_e) ⁷Li takes over when ⁷Be becomes available. Since ⁷Be is unstable, this works more efficiently the higher η

⁷Li is destroyed by burning in stars at temperatures T>10⁶ K
How much mixing of surface layers of stars?

The Li plateau (Spite & Spite 1982)

F. Spite and M. Spite: Lithium in Halo Stars

Fig. 5. $N_{\rm Li}$ versus log $T_{\rm eff}$ for old halo stars

Corrections to apply:		
(1) GCE/GCR	-0.11	+0.07/-0.09
2) Stellar depletion	+0.02	+0.08/-0.02
(3) $T_{\rm eff}$ -scale zeropoint	+0.08	± 0.08
(4) 1-D model atmosphere	0.00	+0.10/-0.00
(5) model temperature gradients	0.00	+0.08/-0.00
(6) NLTE	-0.02	± 0.01
(7) gf values	0.00	± 0.04
(8) anomalous/pathological obj.	0.00	± 0.01
Total correction	-0.03	+0.19/-0.13

Predicted abundance: $A(Li) = 2.6 \pm 0.02$ **Observed mean** LTE abundance $\langle A(Li)_{-2.8} \rangle = 2.12 \pm 0.02$

[nferred primordial abundance

A(Li) 2.09 +0.19/-0.13 Ryan (2005)

Even a ⁶Li plateau??

Errors in predictions?

- 0.4% for Y (coming from n half life 887±2 s)
- ~ 10% for ²D and 20% for ⁷Li.
- WMAP settles parameters $\Omega_{\rm B}{=}0.0224{\pm}0.0009 \Longrightarrow {\rm D/H}_{\rm pred} = 2.6 {\pm}0.2 {\cdot}10^{-5}$ somewhat less than observed.

Comparison to observ.

Is there a unique value of η where predictions agree with observations?

Does this value agree with $\eta(WMAP)$?

Observed

$$\eta = (1.7-3.9) \cdot 10^{-10} (95\% \text{ conf.})$$

WMAP:

$$\eta = (6.1 - 6.7) \cdot 10^{-10}$$

But systematic errors may remain in observed abundances!

What else do we learn?

- SBB is successful

(if systematic errors explain abundances)

- Rather heavy constraints on more particles, as well as on (MeV) masses for e.g. N_{τ} , cf. Olive et al. (2000).
- Empirical grip on a(t) during first minutes even if Robertson-Walker or GR is wrong.
- Neutrino asymmetry ($\rho_v \neq \rho_{\underline{v}}$)?? Strong constraints from nucleosynthesis.
- Upper limits concerning decaying massive particles X, e.g. gravitinos or NLSP (cf. Kawasaki et al., astro-ph/0408426).
 Note ⁶Li may result for half life > 10² s!

And what comes next in nucleosynthesis?

• WMAP polarization => re-ionization (by first stars) after about 200 million years

First stars?

- Cooling of gas problem -- by H_2 , DH, HeH etc.
- Limits masses to at least 100 M_{sun}?
- What remains? What SNe? Pair-instability SNe?? $\gamma \rightarrow e^+ + e^- \rightarrow \nu_e + \underline{\nu}_e$

Search the most metal-poor stars!

We have found low-mass stars with $\varepsilon(Fe) \approx 10^{-5} \varepsilon(Fe)_{Sun}$

Quite odd chemical composition.

May reflect the nucleosynthesis of the first stars.

 Fall-back (low energy) SNe, 3 free parameters! Mass = 25 M_{sun}. Not understood yet!

With the end of Dark Age starts NON-LINEAR processes: the Astrophysical World!